A Brief Review on Damage Development, Micro-Mechanical Failure and Damage Models in GFRP Composites Subjected to Dynamic Loading

Authors

  • Anand Gaurav Department of Mechanical Engineering, SRMUH, Delhi-NCR, 131029, India

DOI:

https://doi.org/10.31437/2414-2115.2022.08.03

Keywords:

Fatigue, GFRP, damage development, fatigue damage models, micromechanics of failure

Abstract

Glass fiber reinforced polymer (GFRP) composites are the widely used polymer composites (PC) which accounts for about ninety percent of the fiber reinforced polymer composites (FRPs) used in structural and semi-structural components by weight. Abundance, cost-effectiveness, high toughness and ease of manufacturing are some of the vital properties associated with glass fibers that drive their widespread applications. Different classes of glass fibers such as E (electrical), S (strength) and C (corrosion) are available and are selectively used with the compatible polymers as matrix to obtain the properties deemed fit for application(s). In terms of mechanical properties, carbon, kevlar and boron fibers are superior but it is the cost that promotes GFRPs applications in larger structures. Glass fiber composites are considered superior to their carbon fiber counterparts in impact damage resistance, but could not be compared against kevlar fiber-based polymer composites in terms of the same. GFRPs components possess the least fatigue life compared to those made using carbon, kevlar and basalt fibers. GFRP composites subjected to fatigue witness property degradation depending upon but not limited to reinforcing fiber orientations, length and weave pattern, loading directions, presence of voids, matrix materials, test frequency, stress ratio and mean stress. Numerous works have been conducted and reported that studies one or more parameters associated with the fatigue damage development in these composites. Thus, this work delineates the effects of fiber geometry and length, matrix materials, ply stacking sequence, mean stress, stress/strain amplitude, test frequency and stress concentration on the fatigue degradation of GFRP laminates. Moreover, this work will also present an insight on various fatigue degradation models developed over period of time by conducting experiments on the specimen. Understanding damage development in these futuristic materials will enable materials engineer and scientist to apply them in critical and sub-critical components for long term applications and elimination or minimization of catastrophic failure of components made of GFRP.

References

Gaurav A, Singh KK. Fatigue behavior of FRP composites and CNT-Embedded FRP composites: A review. Polym Compos 2018; 39: 1785-808. https://doi.org/10.1002/pc.24177

Singh KK, Ansari MdTA, Azam MdS. Fatigue life and damage evolution in woven GFRP angle ply laminates. Int J Fat 2021; 142: 105964. https://doi.org/10.1016/j.ijfatigue.2020.105964

Grimmer CS, Dharan CKH. High-cycle fatigue of hybrid carbon nanotube/glass fiber/polymer composites. J Mater Sci 2008; 43: 4487-4492. https://doi.org/10.1007/s10853-008-2651-9

Zweben, CH. Composite materials. In: Kutz, M (ed) Mechanical engineers’ handbook, volume 1: materials and engineering mechanics. 4th ed. Hoboken, NJ: Wiley, 2015, pp. 401-438. https://doi.org/10.1002/9781118985960.meh110

The Eyecatcher Building. https://www.epfl.ch/labs/cclab/ projects/eyecatcher/

Sun Odyssey 54. https://www.jeanneau.com/en/boats/ sailboat/3-sun-odyssey-ds/535-sun-odyssey-54-ds/

Boeing 787. https://www.boeing.com/commercial/787/ by-design/#/advanced-composite-use

Agarwal BD, Dally JW. Prediction of low-cycle fatigue behaviour of GFRP: an experimental approach. J mater sci 1975; 10: 193-199. https://doi.org/10.1007/BF00540342

Hull D, Clyne TW. An Introduction to Composite Materials. 1st ed. Cambridge University Press; 1996 https://doi.org/10.1017/CBO9781139170130

Hahn HT, Kim RY. Fatigue Behavior of Composite Laminate. J Compos Mater. 1976; 10(2): 156-80. https://doi.org/10.1177/002199837601000205

Mini KM, Lakshmanan M, Mathew L, Mukundan M. Effect of fibre volume fraction on fatigue behaviour of glass fibre reinforced composite. Fat Frac Eng Mater Struct 2012; 35(12): 1160-1166. https://doi.org/10.1111/j.1460-2695.2012.01709.x

Yuan FG, Selek MC. Transverse Cracking and Stiffness Reduction in Composite Laminates. J Reinf Plast Compos 1993; 12(9): 987-1015. https://doi.org/10.1177/073168449301200905

Talreja R. Transverse Cracking and Stiffness Reduction in Composite Laminates. J Compos Mater 1985; 19(4): 355-75. https://doi.org/10.1177/002199838501900404

Talreja R. Fatigue of composite materials: damage mechanisms and fatigue-life diagrams. Proceedings of The Royal Society of London, Series A: Math Phys Sci 1981; 378(1775): 461-75. https://doi.org/10.1098/rspa.1981.0163

Hashin Z, Rotem A. A Fatigue Failure Criterion for Fiber Reinforced Materials. Journal of Compos Mater1973; 7(4): 448-64. https://doi.org/10.1177/002199837300700404

Brunbauer J, Pinter G. Effects of mean stress and fibre volume content on the fatigue-induced damage mechanisms in CFRP. Int J Fat 2015; 75: 28-38. https://doi.org/10.1016/j.ijfatigue.2015.01.014

Reifsnider KL. Fatigue of composite materials. Elsevier; 1991.

Reifsnider KL, Henneke EG, Stinchcomb WW, Duke JC. Damage mechanics and NDE of composite laminates. Mech Compos Mater 1983; 399-420. https://doi.org/10.1016/B978-0-08-029384-4.50032-8

Bhagwan D. Agarwal, Lawrence J. Broutman, K. Chandrashekhara. Analysis and Performance of Fiber Composites. 4th ed. Hoboken: John Willey and Sons; 2006.

Zhang T, Cheng Q, Xu Z, Jiang B, Wang C, Huang Y. Improved interfacial property of carbon fiber composites with carbon nanotube and graphene oxide as multi-scale synergetic reinforcements. Compos A: Appl Sci Man 2019; 125: 105573. https://doi.org/10.1016/j.compositesa.2019.105573

Gaurav A, Singh KK. Effect of pristine MWCNTs on the fatigue life of GFRP laminates-an experimental and statistical evaluation. Compos B: Eng 2019; 172: 83-96. https://doi.org/10.1016/j.compositesb.2019.05.069

Gassan J, Dietz T. Load-increasing fatigue test to characterize the interface of composites under fatigue loadings. J Mater Sci 2003; 38: 2755-2760. https://doi.org/10.1023/A:1024415525739

Pandita SD, Huysmans G, Wevers M, Verpoest I. Tensile fatigue behaviour of glass plain-weave fabric composites in on-and off-axis directions. Compos A: Appl Sci Man 2001; 32(10): 1533-1539. https://doi.org/10.1016/S1359-835X(01)00053-7

Quaresimin M, Ricotta M. Damage Evolution in Woven Composite Laminates under Fatigue Loading. Int J fat 2006; 28(12): 1867-1872. https://doi.org/10.1016/j.ijfatigue.2006.01.013

Shuart MJ. Failure of compression-loaded multidirectional composite laminates. AIAA Journal 1989; 27(9): 1274-9. https://doi.org/10.2514/3.10255

Curtis PT, Moore BB. A comparison of the fatigue performance of woven and non-woven CFRP laminates in reversed axial loading. Int J Fat 1987; 9: 67-78. https://doi.org/10.1016/0142-1123(87)90047-8

Korkiakoski S, Sarlin E, Suihkonen R, Saarela O. Influence of reinforcement positioning on tension-tension fatigue performance of quasi-unidirectional GFRP laminates made of stitched fabrics. Compos B: Eng 2017; 112: 38-48. https://doi.org/10.1016/j.compositesb.2016.12.017

Vallons K, Adolphs G, Lucas P, Lomov S v., Verpoest I. The influence of the stitching pattern on the internal geometry, quasi-static and fatigue mechanical properties of glass fibre non-crimp fabric composites. Compos A: Appl Sci Man 2014; 56: 272-9. https://doi.org/10.1016/j.compositesa.2013.10.015

Song J, Wen W, Cui H. Fatigue behaviors of 2.5D woven composites at ambient and un-ambient temperatures. Compos Struct 2017; 166: 77-86. https://doi.org/10.1016/j.compstruct.2017.01.055

Just G, Koch I, Gude M. Experimental Analysis of Matrix Cracking in Glass Fiber Reinforced Composite Off-Axis Plies under Static and Fatigue Loading. Polym 2022; 14(11): 2160. https://doi.org/10.3390/polym14112160

Friedrich K, Walter R, Voss H, Karger-Kocsist J. Effect of short fibre reinforcement on the fatigue crack propagation and fracture of PEEK-matrix composites. Compos 1986; 17(3): 205-216. https://doi.org/10.1016/0010-4361(86)91004-9

Horst JJ, Spoormaker JL. Mechanisms of Fatigue in Short Glass Fiber Reinforced Polyamide 6. Polym Eng Sci 1996; 36(22): 2718-2726. https://doi.org/10.1002/pen.10671

Bernasconi A, Davoli P, Basile A, Filippi A. Effect of fibre orientation on the fatigue behaviour of a short glass fibre reinforced polyamide-6. Int J Fat 2007; 29(2): 199-208. https://doi.org/10.1016/j.ijfatigue.2006.04.001

de Monte M, Moosbrugger E, Quaresimin M. Influence of temperature and thickness on the off-axis behaviour of short glass fibre reinforced polyamide 6.6 - Cyclic loading. Compos A: Appl Sci Man 2010; 41(10): 1368-79. https://doi.org/10.1016/j.compositesa.2010.02.004

Esmaeillou B, Fitoussi J, Lucas A, Tcharkhtchi A. Multi-scale experimental analysis of the tension-tension fatigue behavior of a short glass fiber reinforced polyamide composite. Proc Eng 2011; 10: 2117-2122. https://doi.org/10.1016/j.proeng.2011.04.350

Esmaeillou B, Ferreira P, Bellenger V, Tcharkhtchi A. Fatigue behavior of polyamide 66/glass fiber under various kinds of applied load. Polym Compos 2012; 33(4): 540-547. https://doi.org/10.1002/pc.22185

Bernasconi A, Cosmi F, Taylor D. Analisys of the fatigue properties of different specimens of a 10% by weight short glass fibre reinforced polyamide 6.6. Sol State Sci 2014; 37: 108-13. https://doi.org/10.1016/j.polymertesting.2014.08.017

Broutman LJ, Gaggar SK. Fatigue Behavior of Epoxy and Polyester Resins. International Journal of Polymeric Materials and Polymeric Biomater 1972; 1(4): 295-316. https://doi.org/10.1080/00914037208075291

Ratner SB, Korobov VI. Self-heating of plastics during cyclic deformation. Polym Mech 1965; 1(3): 63-8. https://doi.org/10.1007/BF00858807

Henaff-Gardin C, Lafarie-Frenot MC. Fatigue behaviour of thermoset and thermoplastic cross-ply laminates. Compos 1992; 23(2): 109-16. https://doi.org/10.1016/0010-4361(92)90111-7

Albouy W, Vieille B, Taleb L. Influence of matrix ductility on the high-temperature fatigue behaviour of quasi-isotropic woven-ply thermoplastic and thermoset laminates. Compos A: Appl Sci Man 2014; 67: 22-36. https://doi.org/10.1016/j.compositesa.2014.07.012

van den Oevert M, Peijs T. Continuous-glass-fibre-reinforced polypropylene composites II. Influence of maleic-anhydride modified polypropylene on fatigue behaviour. Compos A: Appl Sci Man 1998; 29: 227-239. https://doi.org/10.1016/S1359-835X(97)00089-4

Gamstedt EK, Berglund LA, Peijs T. Fatigue mechanisms in unidirectional glass-fibre-reinforced polypropylene. Compos Sci Tech 1999; 59: 759-768. https://doi.org/10.1016/S0266-3538(98)00119-5

Malpot A, Touchard F, Bergamo S. Fatigue Behaviour of a Thermoplastic Composite Reinforced with Woven Glass Fibres for Automotive Application. Proc Eng 2015; 133: 136-47. https://doi.org/10.1016/j.proeng.2015.12.641

Flore D, Wegener K, Flore D. Influence of fibre volume fraction and temperature on fatigue life of glass fibre reinforced plastics. AIMS Mat Sci 2016; 3: 770-795. https://doi.org/10.3934/matersci.2016.3.770

Yokozeki T, Aoki T, Ogasawara T, Ishikawa T. Effects of layup angle and ply thickness on matrix crack interaction in contiguous plies of composite laminates. Compos A: App Sci Man 2005; 36(9): 1229-1235. https://doi.org/10.1016/j.compositesa.2005.02.002

Ansari MTA, Singh KK, Azam MS. Observations of fatigue damage development in woven glass fiber-reinforced polymer composite using transmission light photography technique. Polym Polym Compos 2022; 30: 096739112211013. https://doi.org/10.1177/09673911221101300

Gamstedt EK, Sjoè Gren BA. Micromechanisms in tension-compression fatigue of composite laminates containing transverse plies. Compos Sci Tech 1999; 59: 167-178. https://doi.org/10.1016/S0266-3538(98)00061-X

Gaurav A, Singh KK. Safe design fatigue life of CNT loaded woven GFRP laminates under fully reversible axial fatigue: application of two-parameters Weibull distribution. Plast Rub Compos 2019; 48(7): 293-306. https://doi.org/10.1080/14658011.2019.1613105

Dally JW, Broutman LJ. Frequency Effects on the Fatigue of Glass Reinforced Plastics. J Compos Mater 1967; 1: 424-442. https://doi.org/10.1177/002199836700100410

Kim HC, Ebert LJ. Fatigue life-limiting parameters in fibreglass composites. J Mater Sci 1979; 14: 2616-2624. https://doi.org/10.1007/BF00610630

Singh KK, Gaurav A. Effectiveness of short and straight carbon nanotubes on dispersion state and static/dynamic mechanical properties of woven glass fibre-reinforced polymer laminates. Proc Inst Mech Eng L: J Mater Des Appl 2019; 233(8): 1661-77. https://doi.org/10.1177/1464420718780890

Ferdous W, Manalo A, Peauril J, Salih C, Raghava Reddy K, Yu P, et al. Testing and modelling the fatigue behaviour of GFRP composites - Effect of stress level, stress concentration and frequency. Eng Sci Tech 2020; 23(5): 1223-32. https://doi.org/10.1016/j.jestch.2020.01.001

Kharrazi MR, Sarkani S. Frequency-dependent fatigue damage accumulation in fiber-reinforced plastics. J Compos Mater 2001; 35(21): 1924-53. https://doi.org/10.1177/002199801772661443

Syayuthi ARA, Abdul Majid MS, Ridzuan MJM, Basaruddin KS, Peng TL. Effect of stress ratio on the fatigue behaviour of glass/epoxy composite. J Phys: Conf 2017; 908: 012030. https://doi.org/10.1088/1742-6596/908/1/012030

Movahedi-Rad AV, Keller T, Vassilopoulos AP. Stress ratio effect on tension-tension fatigue behavior of angle-ply GFRP laminates. Int J Fat 2019; 126: 103-11. https://doi.org/10.1016/j.ijfatigue.2019.04.037

Schütz D, Gerharz JJ. Fatigue strength of a fibre-reinforced material. Compos 1977; 8(4): 245-50. https://doi.org/10.1016/0010-4361(77)90110-0

Mar JW, Lin KY. Fracture of Boron/Aluminum Composites with Discontinuities. J Compos Mater 1977; 25: 405-421. https://doi.org/10.1177/002199837701100404

Carlos Ancelotti Junior A, Claudio Pardini L, Marcelo Bezerra E, Roach D. Use of the Mar-Lin Criteria to Determine the Influence of Porosity on the Iosipescu and Short Beam Shear Properties in Carbon Fiber Polymer Matrix Composites. Mat Res 2010; 13: 63-69. https://doi.org/10.1590/S1516-14392010000100014

Tretiak I, Kawashita LF, Hallett SR. Predicting short beam shear strength reduction in carbon/epoxy laminates containing voids. Compos Struct 2022; 290: 115472. https://doi.org/10.1016/j.compstruct.2022.115472

Bizeul M, Bouvet C, Barrau JJ, Cuenca R. Fatigue crack growth in thin notched woven glass composites under tensile loading. Part I: Experimental. Compos Sci Tech 2011; 71(3): 289-96. https://doi.org/10.1016/j.compscitech.2010.11.019

Broughton WR, Gower MRL, Lodeiro MJ, Pilkington GD, Shaw RM. An experimental assessment of open-hole tension-tension fatigue behaviour of a GFRP laminate. Compos A: Appl Sci Man 2011; 42(10): 1310-20. https://doi.org/10.1016/j.compositesa.2011.05.014

Green BG, Wisnom MR, Hallett SR. An experimental investigation into the tensile strength scaling of notched composites. Compos A: Appl Sci Man 2007; 38(3): 867-78. https://doi.org/10.1016/j.compositesa.2006.07.008

Hallett SR, Green BG, Jiang WG, Wisnom MR. An experimental and numerical investigation into the damage mechanisms in notched composites. Compos A: Appl Sci Man 2009; 40(5): 613-24. https://doi.org/10.1016/j.compositesa.2009.02.021

Nixon-Pearson OJ, Hallett SR, Withers PJ, Rouse J. Damage development in open-hole composite specimens in fatigue. Part 1: Experimental investigation. Compos Str 2013; 106: 882-9. https://doi.org/10.1016/j.compstruct.2013.05.033

Bhaskara Rao Pathakokila, Ramji Koona, Rama Krishna Avasarala, Satya Devi Ambadipudi, v Manoj Kumar Uppuluri. Statistical analysis for fatigue life evaluation of woven E-glass/epoxy composite laminates containing off-centre interacting circular holes. Mech Time-Dep Mat 2021; 25(3): 327-40. https://doi.org/10.1007/s11043-020-09444-2

Belmonte E, de Monte M, Riedel T, Quaresimin M. Local microstructure and stress distributions at the crack initiation site in a short fiber reinforced polyamide under fatigue loading. Pol Test 2016; 54: 250-9. https://doi.org/10.1016/j.polymertesting.2016.06.013

Belmonte E, de Monte M, Hoffmann CJ, Quaresimin M. Damage mechanisms in a short glass fiber reinforced polyamide under fatigue loading. Int J Fat 2017; 94: 145-57. https://doi.org/10.1016/j.ijfatigue.2016.09.008

Ibáñez-Gutiérrez FT, Cicero S. Fracture assessment of notched short glass fibre reinforced polyamide 6: An approach from failure assessment diagrams and the theory of critical distances. Compos B: Eng 2017; 111: 124-33. https://doi.org/10.1016/j.compositesb.2016.11.053

Mathew E, Attukur Nandagopal R, Joshi SC, Armando P, Matteo P. Tension-compression fatigue induced stress concentrations in woven composite laminate. J Compos Sci 2021; 5(11): 297. https://doi.org/10.3390/jcs5110297

James TK, Appl FJ, Bert CW. Low-cycle Fatigue of a Glass-fabric-reinforced Plastic Laminate Exp Mech 1968; 8: 327-330. https://doi.org/10.1007/BF02326023

Selmy AI, El-Baky MA, Azab NA. Experimental study on flexural fatigue behavior of glass fibers/epoxy hybrid composites with statistical analysis. J Reinf Plast Compos 2013; 32(23): 1821-34. https://doi.org/10.1177/0731684413496879

Selmy AI, Azab NA, Abd El-Baky MA. Flexural fatigue characteristics of two different types of glass fiber/epoxy polymeric composite laminates with statistical analysis. Compos B: Eng 2013; 45(1): 518-27. https://doi.org/10.1016/j.compositesb.2012.08.017

Amijima S, Fujii T, Hamaguchi M. Static and fatigue tests of a woven glass fabric composite under biaxial tension-torsion loading. Compos 1991; 22(4): 281-9. https://doi.org/10.1016/0010-4361(91)90003-Y

Kawakami H, Fujii TJ, Morita Y. Fatigue Degradation and Life Prediction of Glass Fabric Polymer Composite under Tension/Torsion Biaxial Loadings. J Reinf Plast Compos 1996; 15(2): 183-95. https://doi.org/10.1177/073168449601500204

Fujii T, Shiina T, Okubo K. Fatigue Notch Sensitivity of Glass Woven Fabric Composites Having a Circular Hole under Tension/Torsion Biaxial Loading. J Compos Mater 1994; 28(3): 234-51. https://doi.org/10.1177/002199839402800303

Georgep S. Life Prediction for Resin-Matrix Composite Materials. In: Reifsnider KL, ed. Fatigue of Composite Materials. Elsevier 1991: 431-83. https://doi.org/10.1016/B978-0-444-70507-5.50014-7

Reifsnider KL, Gao Z. A micromechanics model for com- posites under fatigue loading. Int J Fat 1991; 10: 149-156. https://doi.org/10.1016/0142-1123(91)90007-L

Ehyin E, E1-Kadi H. A Fatigue Failure Criterion for Fiber Reinforced Composite Laminae. Compos Str 1990; 15: 61-74. https://doi.org/10.1016/0263-8223(90)90081-O

Fawaz Z, Ellyin F. Fatigue Failure Model for Fibre-Reinforced Materials under General Loading Conditions. J Compos Mater 1994; 28(15): 1432-51. https://doi.org/10.1177/002199839402801503

Jen MHR, Lee CH. Strength and life in thermoplastic composite laminates under static and fatigue loads. Part I: Experimental. Int. J. Fati 1998; 20: 617-629. https://doi.org/10.1016/S0142-1123(98)00030-9

Bond IP. Fatigue life prediction for GRP subjected to variable amplitude loading. Compos A: Appl Sci Man 1999; 30(8): 961-970. https://doi.org/10.1016/S1359-835X(99)00011-1

Philippidis TP and Vassilopoulos AP. Fatigue of composite laminates under off-axis loading. Int J Fat 1999; 21: 253-262. https://doi.org/10.1016/S0142-1123(98)00073-5

Paepegem W van, Degrieck J. Experimental set-up for and numerical modelling of bending fatigue experiments on plain woven glass/epoxy composites. Comp Struct 2001; 51: 1-8. https://doi.org/10.1016/S0263-8223(00)00092-1

Yadav IN, Thapa KB. Fatigue damage model of woven glass-epoxy fabric composite materials. J Mater Res Technol 2020; 9(1): 301-6. https://doi.org/10.1016/j.jmrt.2019.10.058

Mao H, Mahadevan S. Fatigue damage modelling of composite materials Comp Struct 2002; 58: 405-410. https://doi.org/10.1016/S0263-8223(02)00126-5

Broutman LJ, Sahu S. A New Theory to Predict Cumulative Fatigue Damage in Fiberglass Reinforced Plastics. Compos A: Appl Sci Man 2005; 36: 1236-1245. https://doi.org/10.1016/j.compositesa.2005.01.021

Ma Q, Song J, Tang T, An Z. A model of strength degradation for glass fiber reinforced polymer composite laminates under fatigue loading. Proc Inst Mech Eng C: J Mech Eng Sci 2022; 095440622210791. https://doi.org/10.1177/09544062221079172

Varvani-Farahani A, Haftchenari H and Panbechi M. A fatigue damage parameter for life assessment of off-axis unidirectional GRP composites. J Compos Mater 2006; 40: 1659-1670. https://doi.org/10.1177/0021998306060169

Zhang W, Zhou Z, Zhang B, Zhao S. A phenomenological fatigue life prediction model of glass fiber reinforced polymer composites. Mat Des 2015; 66: 77-81. https://doi.org/10.1016/j.matdes.2014.10.036

Downloads

Published

2022-08-10

Issue

Section

Articles