A Review on: Potential Adsorbents for Water and Wastewater Treatment Based on Polymers and Nanocomposite Polymers


  • Ashraf M. El-Shamy Physical Chemistry Department, Electrochemistry and Corrosion Lab., National Research Centre, El-Bohouth St. 33, Dokki, P.O. 12622, Giza, Egypt




Adsorbent Material, Polymeric Coagulants, Wastewater Treatment, Nanocomposite Polymers, Polymer Chemistry, Polymer Characterization


Inorganic coagulants (such as aluminum- and iron-based alum) used in coagulation/flocculation CF, a water and wastewater treatment unit method, have been a subject of concern due to the extra problems related to their usage. Among a broad spectrum of synthetic and natural materials, polymeric coagulants have emerged as the most promising alternative to traditional inorganic alum. The inherent structural features of polymeric coagulants boosted the efficiency and operation of the CF process. This dissertation explores the pros and cons of using polymeric coagulants instead of traditional inorganic coagulants. Based on their theoretical basis, several polymeric coagulants were compared. Using the newly found active coagulating species as a starting point, researchers investigated the methods through which CF interacts with diverse polymeric coagulants. A research need for polymeric coagulants has also been identified as an alternative to a typical inorganic coagulant. Polymer and polymer-based nanocomposite adsorbent materials have recently emerged as potential components for the removal of contaminants from industrial wastewaters because of their high mechanical strength, excellent hydraulic performance, high stability, and the ability to control the chemical composition of their surface. The physicochemical architecture of adsorbent polymers, such as the framework chemistry, porosity structure, interface functional groups, and encapsulating moieties, all affect the adsorption of target pollutants. A broad spectrum of pollutants, both organic and inorganic, may be removed from the environment using nanocomposites based on polymers. Furthermore, the application of these materials is a serious issue.


Jang M., Chen W., Cannon F. S. Preloading hydrous ferric oxide into granular activated carbon for arsenic removal. Environ. Sci. Technol. 2008; 42(9): 3369–3374. https://doi.org/10.1021/es7025399

Abd El-Naby M. Saad, Ikhlas M. Abass, Samir M. Badr El-Din, Fatma H. Mohamed, A. M. El-Shamy. Use of Fungal Biomass in Batch and Continuous Flow Systems for Chromium (VI) Recovery. The African Journal of Mycology and Biotechnology. 1997; 5(1): 37-47.

Emad El-Kashef, A. M. El-Shamy, Ahmed Abdo, Elshafie A. M. Gad, Amr A. Gado. Effect of Magnetic Treatment of Potable Water in Looped and Dead-End Water Networks, Egypt. J. Chem. 2019; 62(8): 1467-1481.

A. M. El-Shamy, A. Abdo, E. A. M. Gad, A. A. Gado, E. El-Kashef. The consequence of magnetic field on the parameters of brackish water in batch and continuous flow system, Bull. Natl. Res. Cent. 2021; 45: 105. https://doi.org/10.1186/s42269-021-00565-3

M. F. Shehata, S. El-Shafey, N. A. Ammar, A. M. El-Shamy. Reduction of Cu+2 and Ni+2 ions from wastewater using mesoporous adsorbent: effect of treated wastewater on corrosion behavior of steel pipelines, Egypt. J. Chem. 2019; 62(9): 1587-1602. https://doi.org/10.21608/ejchem.2019.7967.1627

Vaughan R.L., Reed B. E. Modeling As(V) removal by an iron oxide impregnated activated carbon using the surface com-plexation approach. Water Res. 2005; 39 (6): 1005–1014. https://doi.org/10.1016/j.watres.2004.12.034

Zhuang J. M., Hobenshield E., Walsh T. Arsenate sorption by hydrous ferric oxide incorporated onto granular activated carbon with phenol-formaldehyde resins coating. Environ. Technol. 2008; 29(4): 401–411. https://doi.org/10.1080/09593330801984399

Guo X. J., Chen F. H. Removal of arsenic by bead cellulose loaded with iron oxyhydroxide from groundwater. Environ. Sci. Technol. 2005; 39(17): 6808–6818. https://doi.org/10.1021/es048080k

Chen K. L., Mylon S. E., Elimelech M. Enhanced aggregation of alginate-coated iron oxide (hematite) nanoparticles in the presence of calcium, strontium, and barium cations. Langmuir 2007; 23(11): 5920–5928. https://doi.org/10.1021/la063744k

A. M. El-Shamy, Hala K. Farag, W. M. Saad. Comparative Study of Removal of Heavy Metals from Industrial Wastewater Using Clay and Activated Carbon in Batch and Continuous Flow Systems, Egyptian Journal of Chemistry 2017; 60(6): 1165-1175. https://doi.org/10.21608/ejchem.2017.1606.1128

Zouboulis A. I., Katsoyiannis I. A. Arsenic removal using iron oxide loaded alginate beads. Ind. Eng. Chem. Res. 2002; 41(24): 6149–6155. https://doi.org/10.1021/ie0203835

Jang M., Min S. H., Park J. K., Tlachac E. J. Hydrous ferric oxide incorporated diatomite for remediation of arsenic-contaminated groundwater. Environ. Sci. Technol. 2007; 41(9): 3322–3328. https://doi.org/10.1021/es062359e

Jang M., Min S. H., Kim T. H., Park J. K. Removal of arsenite and arsenate using hydrous ferric oxide incorporated into naturally occurring porous diatomite. Environ. Sci. Technol. 2006; 40(5): 1636–1643. https://doi.org/10.1021/es051501t

Kalderis D., Koutoulakis D., Paraskeva P., Diamadopoulos E., Otal E., Olivares del Valle J., Fernandez-Pereira C. Adsorption of polluting substances on activated carbons prepared from rice husk and sugarcane bagasse. Chem. Eng. J. 2008; 144(1): 42–50. https://doi.org/10.1016/j.cej.2008.01.007

Qiu Y., Cheng H., Xu C., Sheng D. Surface characteristics of crop-residue-derived black carbon and lead(II) adsorption. Water Res. 2008; 42(3): 567–574. https://doi.org/10.1016/j.watres.2007.07.051

Yu Z., Peldszus S., Huck P. M. Adsorption characteristics of selected pharmaceuticals and an endocrine disrupting compound naproxen, carbamazepine and nonylphenol on activated carbon. Water Res. 2008; 42(12): 2873–2882. https://doi.org/10.1016/j.watres.2008.02.020

Karaca S., Gürses A., Açikyildiz M., Ejder M. Adsorption of cationic dye from aqueous solutions by activated carbon. Microporous Mesoporous Mater. 2008; 115(3): 376–382. https://doi.org/10.1016/j.micromeso.2008.02.008

Karanfil T., Dastgheib S. A. Trichloroethylene adsorption by fibrous and granular activated carbons: aqueous phase, gas phase, and water vapor adsorption studies. Environ. Sci. Technol. 2004; 38(22): 5834–5841. https://doi.org/10.1021/es0497936

Hernandez-Ramirez O., Holmes S. M. Novel and modified materials for wastewater treatment applications. J. Mater. Chem. 2008; 18(24): 2751–2761. https://doi.org/10.1039/b716941h

Memon S. Q., Memon N., Solangi A. R., Memon J-u-R. Sawdust: a green and economical sorbent for thallium removal. Chem. Eng. J. 2008; 140(1–3): 235–240. https://doi.org/10.1016/j.cej.2007.09.044

A. M. El-Shamy, K. M. Zohdy, H. A. El-Dahan. Control of Corrosion and Microbial Corrosion of Steel Pipelines in Salty Environment by Polyacrylamide, Ind. Chem. 2016; 2(120): 1-5. https://doi.org/10.4172/2469-9764.1000120

M. M. Megahed, M. M. Abdel Bar, E. S. M. Abouelez, A. M. El-Shamy. Polyamide Coating as a Potential Protective Layer Against Corrosion of Iron Artifacts, Egypt. J. Chem. 2021; 64(10): 5693–5702.

Y. Reda, M. Abdelbar, A. M. El-Shamy. Fortification performance of polyurethane coating in outdoor historical ironworks, Bull. Natl. Res. Cent. 2021; 45: 69. https://doi.org/10.1186/s42269-021-00532-y

Y. Reda, A. M. El-Shamy, Ashraf K. Eessaa. Effect of hydrogen embrittlement on the microstructures of electroplated steel alloy 4130, Ain Shams Engineering Journal 2018; 9(4): 2973-2982. https://doi.org/10.1016/j.asej.2018.08.004

Ríos C. A., Williams C. D., Roberts C. L. Removal of heavy metals from acid mine drainage (AMD) using coal fly ash, natural clinker and synthetic zeolites. J. Hazard. Mater. 2008; 156(1–3): 23–35. https://doi.org/10.1016/j.jhazmat.2007.11.123

Tripathy S. S., Raichur A. M. Abatement of fluoride from water using manganese dioxide-coated activated alumina. J. Hazard. Mater. 2008; 153(3):1043–1051. https://doi.org/10.1016/j.jhazmat.2007.09.100

Vilar V. J. P., Botelho C. M. S., Boaventura R. A. R. Metal biosorption by algae Gelidium derived materials from binary solutions in a continuous stirred adsorber. Chem. Eng. J. 2008; 141(1–3): 42–50. https://doi.org/10.1016/j.cej.2007.10.011

Pan B., Pan B., Zhang W., Lv L., Zhang Q., Zheng S. Development of polymeric and polymer-based hybrid adsorbents for pollutants removal from waters. Chem. Eng. J. 2009; 151(1–3): 19–29. https://doi.org/10.1016/j.cej.2009.02.036

Pan B. C., Zhang Q. X., Meng F. W., Li X. T., Zhang X., Zheng J. Z., Zhang W. M., Pan B. J., Chen J. L. Sorption enhancement of aromatic sulfonates onto an aminated hyper-cross-linked polymer. Environ. Sci. Technol. 2005; 39(9): 3308–3313. https://doi.org/10.1021/es048548j

Sun Y., Chen J., Li A., Liu F., Zhang Q. Adsorption of resorcinol and catechol from aqueous solution by aminated hypercrosslinked polymers. React. Funct. Polym. 2005; 64(2): 63–73. https://doi.org/10.1016/j.reactfunctpolym.2005.03.004

Bratkowska D., Fontanals N., Borrull F., Cormack P. A., Sherrington D. C., Marce R. M. Hydrophilic hypercrosslinked polymeric sorbents for the solid-phase extraction of polar contaminants from water. J. Chromatogr. A. 2010; 1217(19): 3238–3243. https://doi.org/10.1016/j.chroma.2009.08.091

Garcia A., Ferreira L., Leitao A., Rodrigues A. Binary adsorption of phenol and m-cresol mixtures onto a polymeric adsorbent. Adsorpt. J. Int. Adsorpt. Soc. 1999; 5(4): 359–368. https://doi.org/10.1023/A:1008904631147

He C., Huang K., Huang J. Surface modification on a hyper-cross-linked polymeric adsorbent by multiple phenolic hydroxyl groups to be used as a specific adsorbent for adsorptive removal of p-nitroaniline from aqueous solution. J. Colloid. Interface. Sci. 2010; 342 (2): 462–466. https://doi.org/10.1016/j.jcis.2009.10.026

Bilgili M. S. Adsorption of 4-chlorophenol from aqueous solu-tions by XAD-4 resin: isotherm, kinetic, and thermodynamic analysis. J. Hazard. Mater. 2006; 137(1): 157–164. https://doi.org/10.1016/j.jhazmat.2006.01.005

Xu Z. Y., Zhang Q. X., Wu C. L., Wang L. S. Adsorption of naphthalene derivatives on different macroporous polymeric adsorbents. Chemosphere 1997; 35(10): 2269–2276. https://doi.org/10.1016/S0045-6535(97)00305-6

Long C., Li A., Wu H., Liu F., Zhang Q. Polanyi-based models for the adsorption of naphthalene from aqueous solutions onto nonpolar polymeric adsorbents. J. Colloid. Interface. Sci. 2008; 319(1): 12–18. https://doi.org/10.1016/j.jcis.2007.10.052

Lee J. W., Jun H. J., Kwak D. H., Chung P. G. Adsorption of dichloromethane from water onto a hydrophobic polymer resin XAD-1600. Water Res. 2005; 39(4): 617–629. https://doi.org/10.1016/j.watres.2004.10.001

Zheng K., Pan B., Zhang Q., Zhang W., Pan B., Han Y., Zhang Q., Wei D., Cu Z., Zhang Q. Enhanced adsorption of p-nitroaniline from water by a carboxylated polymeric adsorbent. Sep. Purif. Technol. 2007; 57(2): 250–256. https://doi.org/10.1016/j.seppur.2007.04.017

Otero M., Zabkova M., Rodrigues A. E. Comparative study of the adsorption of phenol and salicylic acid from aqueous solution onto nonionic polymeric resins. Sep. Purif. Technol. 2005; 45(2): 86–95. https://doi.org/10.1016/j.seppur.2005.02.011

Yang W. C., Shim W. G., Lee J. W., Moon H. (2003) Adsorption and desorption dynamics of amino acids in a nonionic polymeric sorbent XAD-16 column. Korean J. Chem. Eng. 2003; 20(5): 922–929. https://doi.org/10.1007/BF02697300

Deosarkar S. P., Pangarkar V. G. Adsorptive separation and recovery of organics from PHBA and SA plant effluents. Sep. Purif. Technol. 2004; 38(3): 241–254. https://doi.org/10.1016/j.seppur.2003.11.012

Abburi K. Adsorption of phenol and p-chlorophenol from their single and bisolute aqueous solutions on Amberlite XAD-16 resin. J. Hazard. Mater. 2003; 105(1–3): 143–156. https://doi.org/10.1016/j.jhazmat.2003.08.004

Musty P. R., Nickless G. Use of amberlite XAD-4 for extraction and recovery of chlorinated insecticides and polychlorinated biphenyls from water. J. Chromatogr. 1974; 89(2): 185–190. https://doi.org/10.1016/S0021-9673(01)99391-4

Hua M., Zhang S., Pan B., Zhang W., Lv L., Zhang Q. (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J. Hazard. Mater. 2012; 211–212:317–331. https://doi.org/10.1016/j.jhazmat.2011.10.016

Zhao X., Lv L., Pan B., Zhang W., Zhang S., Zhang Q. Polymer-supported nanocomposites for environmental application: a review. Chem. Eng. J. 2011; 170(2–3): 381–394. https://doi.org/10.1016/j.cej.2011.02.071

Swallow K. C., Hume D. N., Morel F. M. M. Sorption of copper and lead by hydrous ferric-oxide. Environ. Sci. Technol. 1980; 14(11): 1326–1331. https://doi.org/10.1021/es60171a003

Kinniburgh D. G., Jackson M. L., Syers J. K. Adsorption of alkaline-earth, transition, and heavy-metal cations by hydrous oxide gels of iron and aluminum. Soil Sci. Soc. Am. J. 1976; 40 (5): 796–799. https://doi.org/10.2136/sssaj1976.03615995004000050047x

Fan M., Boonfueng T., Xu Y., Axe L., Tyson T. A. Modeling Pb sorption to microporous amorphous oxides as discrete particles and coatings. J. Colloid. Interface. Sci. 2005; 281(1): 39–48. https://doi.org/10.1016/j.jcis.2004.08.050

Trivedi P., Axe L., Tyson T. A. XAS studies of Ni and Zn sorbed to hydrous manganese oxide. Environ. Sci. Technol. 2001; 35(22): 4515–4521. https://doi.org/10.1021/es0109848

Bargar J. R., Brown G. E., Parks G. A. Surface complexation of Pb(II) at oxide-water interfaces. 1. XAFS and bond-valence determination of mononuclear and polynuclear Pb(II) sorption products on aluminum oxides. Geochim Cosmochim Acta 1997; 61(13): 2617–2637. https://doi.org/10.1016/S0016-7037(97)00124-5

Jang J. H., Dempsey B. A. Coadsorption of arsenic (III) and arsenic (V) onto hydrous ferric oxide: effects on abiotic oxidation of arsenic (III), extraction efficiency, and model accuracy. Environ. Sci. Technol. 2008; 42(8): 2893–2898. https://doi.org/10.1021/es702318f

Kawashima M., Tainaka Y., Hori T., Koyama M., Takamatsu T. Phosphate adsorption onto hydrous manganese(IV) oxide in the presence of divalent-cations. Water Res. 1986; 20(4): 471–475. https://doi.org/10.1016/0043-1354(86)90195-8

Streat M., Sweetland L. A. Removal of pesticides from water using hypercrosslinked polymer phases. Process Saf. Environ. Prot. 1998; 76(2): 127–134. https://doi.org/10.1205/095758298529416

Zhaoyi X., Quauxing Z., Changlong W., Liansheng W. Adsor-ption of naphthalene derivatives on different macroporous polymeric adsorbents. Chemosphere 1997; 38(10): 8. https://doi.org/10.1016/S0045-6535(97)00305-6

Yang W.C., Shim W.G., Moon J. WLAH. Adsorption and desorption dynamics of amino acids in a nonionic polymeric sorbent XAD-16 column. Korean J. Chem. Eng. 2003; 20(5): 8. https://doi.org/10.1007/BF02697300

Pan B., Du W., Zhang W., Zhang X., Zhang Q., Pan B., Lv L., Zhang Q., Chen J. Improved adsorption of 4-nitrophenol onto a novel hyper-cross-linked polymer. Environ. Sci. Technol. 2007; 41(14): 5057–5062. https://doi.org/10.1021/es070134d

Pan B., Zhang W., Pan B., Qiu H., Zhang Q., Zhang Q., Zheng S. Efficient removal of aromatic sulfonates from wastewater by a recyclable polymer: 2-naphthalene sulfonate as a representative pollutant. Environ. Sci. Technol. 2008; 42(19): 7411–7416. https://doi.org/10.1021/es801370n

Masque N., Galia M., Marce R. M., Borrull F. Influence of chemical modification of polymeric resin on retention of polar compounds in solid-phase extraction. Chromatographia 1999; 50(1–2): 21–26. https://doi.org/10.1007/BF02493612

Xu Z., Zhang Q,. Fang H.H.P. Applications of porous resin sorbents in industrial wastewater treatment and resource recovery. Crit. Rev. Environ. Sci. Technol. 2003; 33(4): 363–389. https://doi.org/10.1080/10643380390249512

Kunin R. Porous polymers as adsorbents a review of current practice. Anzber-lzi-lites, 1980; 163.

Dinu M. V., Dragan E. S. Heavy metals adsorption on some iminodiacetate chelating resins as a function of the adsorption parameters. React. Funct. Polym. 2008; 68(9): 1346–1354. https://doi.org/10.1016/j.reactfunctpolym.2008.06.011

Pan B., Zhang W., Zhang Q., Zheng S. Adsorptive removal of phenol from aqueous phase by using a porous acrylic ester polymer. J. Hazard. Mater. 2008; 157(2–3): 293–299. https://doi.org/10.1016/j.jhazmat.2007.12.102

Okay O. Macroporous copolymer networks. Prog .Polym. Sci. (Oxford) 2000; 25(6): 711–779. https://doi.org/10.1016/S0079-6700(00)00015-0

Simpson E.J., Abukhadra R.K., Koros W.J., Schechter R.S. Sorption equilibrium isotherms for volatile organics in aqueous solution: comparison of head-space gas chromatography and on-line UV stirred cell results. Ind. Eng. Chem. Res. 1993; 32(10): 2269–2276. https://doi.org/10.1021/ie00022a011

A. M. El-Shamy, H. A. El-Boraey, H. F. El-Awdan. Chemical Treatment of Petroleum Wastewater and its Effect on the Corrosion Behavior of Steel Pipelines in Sewage Networks, J. Chem. Eng. Process Technol. 2017; 8(324), 1-9. https://doi.org/10.1016/j.jenvman.2018.04.074

A. M. El-Shamy, Ibrahim Abdelfattah, Ola I. Elshafie, M. F. Shehata. Potential removal of organic loads from petroleum wastewater and its effect on the corrosion behavior of municipal networks, J. Environ. Management, 2018; 219, 325-331.

M. M. Megahed, M. Youssif, A. M. El-Shamy. Selective Formula as A Corrosion Inhibitor to Protect the Surfaces of Antiquities Made of Leather-Composite Brass Alloy, Egypt. J. Chem. 2020; 63(12): 5269-5287.

Amal M. Abd Elkarim, A. M. El-Shamy, Mohamed M. Megahed, Atef Kalmouch. Evaluation the Inhibition Efficiency of a New Inhibitor on Leaded Bronze Statues from Yemen, ARCTIC Journal, 2018; 71(1): 2-33.

Freitas P. A., Iha K., Felinto M. C., Suarez-Iha M. E. Adsorption of di-2-pyridyl ketone salicyloylhydrazone on amberlite XAD-2 and XAD-7 resins: characteristics and isotherms. J. Colloid. Interface. Sci. 2008; 323(1): 1–5. https://doi.org/10.1016/j.jcis.2008.04.001

Zhang W., Xu Z., Pan B., Hong C., Jia K., Jiang P., Zhang Q. Equilibrium and heat of adsorption of diethyl phthalate on heterogeneous adsorbents. J. Colloid. Interface. Sci. 2008; 325 (1): 41–47. https://doi.org/10.1016/j.jcis.2008.05.030

Wang G., Dou B. J., Wang J. H., Wang W. Q., Hao Z. P. Adsorption properties of benzene and water vapor on hyper-cross-linked polymers. RSC Adv. 2013; 3(43): 20523–20531. https://doi.org/10.1039/c3ra41450g

Davankov V. A., Rogoshin S. V., Tsyurupa M. P. Macronet isoporous gels through crosslinking of dissolved polystyrene. J. Polym. Sci. Part C. Polym. Symp. 1974; 47: 95–101. https://doi.org/10.1002/polc.5070470113

Oh C. G., Ahn J. H., Ihm S. K. Adsorptive removal of phenolic compounds by using hypercrosslinked polystyrenic beads with bimodal pore size distribution. React. Funct. Polym. 2003; 57(2–3): 103–111. https://doi.org/10.1016/j.reactfunctpolym.2003.08.003

Li A., Zhang Q., Zhang G., Chen J., Fei Z., Liu F. Adsorption of phenolic compounds from aqueous solutions by a water-compatible hypercrosslinked polymeric adsorbent. Chemosphere 2002; 47(9): 981–989. https://doi.org/10.1016/S0045-6535(01)00222-3

Nastaj J., Kami?ska A. (2008) Adsorption of phenol on water-fluidized polymeric amberlite XAD-4 and XAD-16 adsorbents. Przem. Chem. 2008; 87(3): 300–306.

Azanova V. V., Hradil J. Sorption properties of macroporous and hypercrosslinked copolymers. React. Funct. Polym. 1999; 41(1): 163–175. https://doi.org/10.1016/S1381-5148(99)00029-2

Juang R. S., Shiau J. Y. Adsorption isotherms of phenols from water onto macroreticular resins. J. Hazard. Mater. 1999; 70(3): 171–183. https://doi.org/10.1016/S0304-3894(99)00152-1

Gusler G. M., Browne T. E., Cohen Y. Sorption of organics from aqueous solution onto polymeric resins. Ind. Eng. Chem. Res. 1993; 32(11): 2727–2735. https://doi.org/10.1021/ie00023a040

Yang W., Li A., Fu C., Fan J., Zhang Q. Adsorption mechanism of aromatic sulfonates onto resins with different matrices. Ind Eng Chem Res 2007; 46(21): 6971–6977. https://doi.org/10.1021/ie0615281

Saikia M. D. Revisiting adsorption of biomolecules on polymeric resins. Colloids Surf. A. 2008; 315(1–3): 196–204. https://doi.org/10.1016/j.colsurfa.2007.07.026

Bohra P. M., Vaze A. S., Pangarkar V. G., Taskar A. Adsorptive recovery of water-soluble essential oil components. J. Chem. Technol. Biotechnol. 1994; 60(1): 97–102. https://doi.org/10.1002/jctb.280600115

Streat M., Sweetland L. A. Physical and adsorptive properties of hypersol-macronet™ polymers. React. Funct. Polym. 1997; 35(1–2): 99–109. https://doi.org/10.1016/S1381-5148(97)00049-7

Davankov V. A., Rogozhin S. V., Tsyurupa M. P. Macronet polystyren strucutres for ionites and method of producing same. US Patent, 1969; 3729457.

A. M. El-Shamy. A Review on: Biocidal Activity of Some Chemical Structures and Their Role in Mitigation of Microbial Corrosion, Egypt. J. Chem. 2020; 63(12): 5251-5267.

Amal M. Abdel?Karim, Ashraf M. El?Shamy, A Review on Green Corrosion Inhibitors for Protection of Archeological Metal Artifacts, Journal of Bio- and Tribo-Corrosion 2022; 8:35. https://doi.org/10.1007/s40735-022-00636-6

Amal M. Abdel Karim, Ashraf M. El Shamy, Y. Reda. Corrosion and Stress Corrosion Resistance of Al Zn Alloy 7075 by Nano Polymeric Coatings, Journal of Bio- and Tribo-Corrosion 2022; 8: 57. https://doi.org/10.1007/s40735-022-00656-2

Y. Reda, K. M. Zohdy, A. K. Eessaa, A. M. El-Shamy. Effect of plating materials on the corrosion properties of steel alloy 4130, Egypt. J. Chem. 2020; 63(2): 579-597.

A. M. El-Shamy, M. M. Abdel Bar. Ionic Liquid as Water Soluble and Potential Inhibitor for Corrosion and Microbial Corrosion for Iron Artifacts, Egypt. J. Chem. 2021; 64(4): 1867-876.

Zeng X., Fan Y., Wu G., Wang C., Shi R. Enhanced adsorption of phenol from water by a novel polar post-crosslinked polymeric adsorbent. J. Hazard. Mater. 2009; 169(1–3): 1022–1028. https://doi.org/10.1016/j.jhazmat.2009.04.044

Bai L. L., Zhou Y. H., Wang X. L., Yuan S. G., Wu X. L. Facile synthesis of hypercrosslinked resin via photochlorination of p-xylene and succedent alkylation polymerization. Chin. Chem. Lett. 2011; 22(9): 1115–1118. https://doi.org/10.1016/j.cclet.2011.03.011

Xiaohui Z., Siguo Y. Adsorption of benzene from air, solution and film floating on the water by non-polystyrenr hypercrosslinked resin. Ion Exch. Adsorpt. 2011;27(4): 297–303.

Jafvert C. T., Westall J. C., Grieder E., Schwarzenbach R. P. Distribution of hydrophobic ionogenic organic compounds between octanol and water: organic acids. Environ. Sci. Technol. 1990; 24(12): 1795–1803. https://doi.org/10.1021/es00082a002

Stapleton M. G., Sparks D. L., Dentel S. K. Sorption of pentachlorophenol to HDTMA-clay as a function of ionic strength and pH. Environ. Sci. Technol. 1994; 28(13): 2330–2335. https://doi.org/10.1021/es00062a017

Zhang W. M., Pan B. C., Xu Z. W., Hong C. H., Zhang Q. J., Zhang B., Li A. M., Pan B. G., Zhang Q. X., Chen J. L. Method of increasing hydrophilicity of complex function adsorption resin and reinforcing adsorbability of the complex function adsorption resin. Chinese Patent, CN 2007; 3(116): 1001997.

K. M. Zohdy, A. M. El-Shamy, Elshafie A. M. Gad, Atef Kalmouch. The corrosion inhibition of (2Z,2?Z)-4,4?-(1,2-phenylene bis (azanediyl)) bis (4-oxobut-2-enoic acid) for carbon steel in acidic media using DFT, Egyptian journal of petroleum 2019; 28(4): 355-359. https://doi.org/10.1016/j.ejpe.2019.07.001

Xiao G., Fu L., Li A. Enhanced adsorption of bisphenol A from water by acetylaniline modified hyper-cross-linked polymeric adsorbent: effect of the cross-linked bridge. Chem. Eng. J. 2012; 191: 171–176. https://doi.org/10.1016/j.cej.2012.02.092

Pan B. C., Xiong Y., Li A. M., Chen J. L., Zhang Q. X., Jin X. Y. Adsorption of aromatic acids on an aminated hypercrosslinked macroporous polymer. React. Funct. Polym. 2002; 53(2–3): 63–72. https://doi.org/10.1016/S1381-5148(02)00123-2

Wang R. F., Shi Z. Q., Shi R. F., Zhang J. Z., Ou L. L. The study of adsorption of phenol and aniline on aminated-macroporous hypercrosslinked resins. Acta Polym. Sin. 2005; 3:339–344.

Chang C. F., Chang C. Y., Hsu K. E., Lee S. C., Hoell W. Adsorptive removal of the pesticide methomyl using hypercrosslinked polymers. J. Hazard. Mater. 2008; 155(1–2): 295–304. https://doi.org/10.1016/j.jhazmat.2007.11.057

Yu Y., Zhuang Y. Y., Wang Z. H. Adsorption of water-soluble dye onto functionalized resin. J. Colloid. Interface. Sci. 2001; 242(2): 288–293. https://doi.org/10.1006/jcis.2001.7780

Zhu X. X., Brizard F., Piche J., Yim C. T., Brown G. R. Bile salt anion sorption by polymeric resins: comparison of a functionalized polyacrylamide resin with cholestyramine. J Colloid Interface Sci 2000; 232(2): 282–288. https://doi.org/10.1006/jcis.2000.7157

Pan B., Zhang Q., Pan B., Zhang W., Du W., Ren H. Removal of aromatic sulfonates from aqueous media by aminated polymeric sorbents: concentration-dependent selectivity and the application. Microporous Mesoporous Mater. 2008; 116(1–3): 63–69. https://doi.org/10.1016/j.micromeso.2008.03.016

Hua M., Zhang S., Pan B., Zhang W., Lv L., Zhang Q. Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J. Hazard. Mater. 2012; 211: 317–331. https://doi.org/10.1016/j.jhazmat.2011.10.016

Jiang Y., Hua M., Wu B., Ma H., Pan B., Zhang Q. Enhanced removal of arsenic from a highly laden industrial effluent using a combined coprecipitation/nano-adsorption process. Environ. Sci. Pollut. Res. 2014; 21(10):.6729–6735. https://doi.org/10.1007/s11356-014-2590-8

Pan B., Xu J., Wu B., Li Z., Liu X. Enhanced removal of fluoride by polystyrene anion exchanger supported hydrous zirconium oxide nanoparticles. Environ. Sci. Technol. 2013; 47 (16): 9347–9354. https://doi.org/10.1021/es401710q

Jiang Z., Zhang S., Pan B., Wang W., Wang X., Lv L., Zhang W., Zhang Q. A fabrication strategy for nanosized zero valent iron (nZVI)-polymeric anion exchanger composites with tunable structure for nitrate reduction. J. Hazard. Mater. 2012; 233: 1–6. https://doi.org/10.1016/j.jhazmat.2012.06.025

Zhang Q., Du Q., Jiao T., Pan B., Zhang Z., Sun Q., Wang S., Wang T., Gao F. Selective removal of phosphate in waters using a novel of cation adsorbent: Zirconium phosphate (ZrP) behavior and mechanism. Chem. Eng. J. 2013; 221:315–321. https://doi.org/10.1016/j.cej.2013.02.001

Xie Y., Lv L., Zhang S., Pan B., Wang X., Chen Q., Zhang W., Zhang Q. Fabrication of anion exchanger resin/nano-CdS composite photocatalyst for visible light RhB degradation. Nanotechnology 2011; 22(30):305707. https://doi.org/10.1088/0957-4484/22/30/305707

Zhang Y., Pan B., Shan C., Gao X. Enhanced phosphate removal by nanosized hydrated La(III) oxide confined in cross-linked polystyrene networks. Environ. Sci. Technol. 2016; 50 (3):1447–1454. https://doi.org/10.1021/acs.est.5b04630

Zhang X., Zhang L., Li Z., Jiang Z., Zheng Q., Lin B., Pan B. Rational design of antifouling polymeric nanocomposite for sustainable fluoride removal from NOM-rich water. Environ. Sci. Technol. 2017; 51(22): 13363–13371. https://doi.org/10.1021/acs.est.7b04164

Zhang X., Wu M., Dong H., Li H., Pan B. Simultaneous oxidation and sequestration of As(III) from water by using redox polymer-based Fe(III) oxide nanocomposite. Environ. Sci. Technol. 2017; 51(11): 6326–6334. https://doi.org/10.1021/acs.est.7b00724

Zhang Q., Li A., Pan B. The development of ion exchange and adsorption resin and its application in industrial wastewater treatment and resource reuse. Polym. Bull. 2015; 9: 21–43.

Goto M., Goto S. Removal and recovery of heavy-metals by ion-exchange fiber. J. Chem. Eng. Jpn. 1987; 20(5): 467–472. https://doi.org/10.1252/jcej.20.467

Egen N., Ford P. C., Grotz L. C. Hard water, water softening, ion-exchange. J. Chem. Educ. 1976; 53(5): 302–303. https://doi.org/10.1021/ed053p302

Zhang Q. R., Du W., Pan B. C., Pan B. J., Zhang W. M., Zhang Q. J., Xu Z. W., Zhang Q. X. A comparative study on Pb2+, Zn2+ and Cd2+ sorption onto zirconium phosphate supported by a cation exchanger. J. Hazard. Mater. 2008; 152(2): 469–475. https://doi.org/10.1016/j.jhazmat.2007.07.012

Nastasovi? A., Jovanovi? S., ?or?evi? D., Onjia A., Jakovljevi? D., Novakovi? T. Metal sorption on macroporous poly(GMA-co-EGDMA) modified with ethylene diamine. React. Funct. Polym. 2004; 58(2): 139–147. https://doi.org/10.1016/j.reactfunctpolym.2003.11.015

Hosseini M. S., Raissi H., Madarshahian S. Synthesis and application of a new chelating resin functionalized with 2,3-dihydroxy benzoic acid for Fe(III) determination in water samples by flame atomic absorption spectrometry. React. Funct. Polym. 2006; 66(12): 1539–1545. https://doi.org/10.1016/j.reactfunctpolym.2006.05.003

Alberti G., Pesavento M., Biesuz R. A chelating resin as a probe for the copper(II) distribution in grape wines. React. Funct. Polym. 2007; 67(10): 1083–1093. https://doi.org/10.1016/j.reactfunctpolym.2007.07.001

Chen C., Chiang C. Removal of heavy metal ions by a chelating resin containing glycine as chelating groups. Sep. Purif. Technol. 2007; 54(3): 396–403. https://doi.org/10.1016/j.seppur.2006.10.020

Meesri S., Praphairaksit N., Imyim A. Extraction and preconcentration of toxic metal ions from aqueous solution using benzothiazole-based chelating resins. Microchem. J. 2007; 87(1): 47–55. https://doi.org/10.1016/j.microc.2007.05.006

Pramanik S., Dey S., Chattopadhyay P. A new chelating resin containing azophenolcarboxylate functionality: synthesis, characterization and application to chromium speciation in wastewater. Anal. Chim. Acta. 2007; 584(2): 469–476. https://doi.org/10.1016/j.aca.2006.11.041

Atia A. A., Donia A. M., Yousif A. M. Removal of some hazardous heavy metals from aqueous solution using magnetic chelating resin with iminodiacetate functionality. Sep. Purif. Technol. 2008; 61(3): 348–357. https://doi.org/10.1016/j.seppur.2007.11.008

Chen C. Y., Lin M. S., Hsu K. R. Recovery of Cu(II) and Cd(II) by a chelating resin containing aspartate groups. J. Hazard. Mater. 2008; 152(3): 986–993. https://doi.org/10.1016/j.jhazmat.2007.07.074

Saygi K. O., Tuzen M., Soylak M., Elci L. Chromium speciation by solid phase extraction on Dowex M 4195 chelating resin and determination by atomic absorption spectrometry. J. Hazard. Mater. 2008; 153(3): 1009–1014. https://doi.org/10.1016/j.jhazmat.2007.09.051

Denizli A., Sanli N., Garipcan B., Patir S., Alsancak G. Methacryloylamidoglutamic acid incorporated porous poly(methyl methacrylate) beads for heavy-metal removal. Ind. Eng. Chem. Res. 2004; 43(19): 6095–6101. https://doi.org/10.1021/ie030204z

Leinonen H., Lehto J. Ion-exchange of nickel by iminodiacetic acid chelating resin Chelex 100. React. Funct. Polym. 2000; 43(1–2): 1–6. https://doi.org/10.1016/S1381-5148(98)00082-0

Dabrowski A., Hubicki Z., Podkoscielny P., Robens E. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 2004; 56(2): 91–106. https://doi.org/10.1016/j.chemosphere.2004.03.006

Memon S. Q., Bhanger M. I., Hasany S. M., Khuhawar M. Y. The efficacy of nitrosonaphthol functionalized XAD-16 resin for the preconcentration/sorption of Ni(II) and Cu(II) ions. Talanta 2007; 72(5): 1738–1745. https://doi.org/10.1016/j.talanta.2006.12.017

Dutta S., Das A. K. Synthesis, characterization, and application of a new chelating resin functionalized with dithiooxamide. J. Appl. Polym. Sci. 2007;103(4): 2281–2285. https://doi.org/10.1002/app.25436

Kaur H., Agrawal Y. K. Functionalization of XAD-4 resin for the separation of lanthanides using chelation ion exchange liquid chromatography. React. Funct. Polym. 2005; 65 (3):277–283. https://doi.org/10.1016/j.reactfunctpolym.2005.06.010

Dogutan M., Filik H., Apak R. Preconcentration of manganese(II) from natural and sea water on a palmitoyl quinolin-8-ol functionalized XAD copolymer resin and spectrophotometric determination with the formaldoxime reagent. Anal. Chim. Acta. 2003; 485(2): 205–212. https://doi.org/10.1016/S0003-2670(03)00408-2

Mondal B. C., Das A. K. Determination of mercury species with a resin functionalized with a 1,2-bis(o-aminophenylthio)ethane moiety. Anal. Chim. Acta. 2003; 477(1): 73–80. https://doi.org/10.1016/S0003-2670(02)01372-7

Bernard J., Branger C., Nguyen T. L. A., Denoyel R., Margaillan A. Synthesis and characterization of a polystyrenic resin functionalized by catechol: application to retention of metal ions. React. Funct. Polym. 2008; 68(9): 1362–1370. https://doi.org/10.1016/j.reactfunctpolym.2008.06.014

Rivas B. L., Pooley S. A., Maturana H. A., Villegas S. Sorption properties of poly (styrene-co-divinylbenzene) amine functionalized weak resin. J. Appl. Polym. Sci. 2001; 80 (12): 2123–2127. https://doi.org/10.1002/app.1313

Dev K., Pathak R., Rao G. N. Sorption behaviour of lanthanum(III), neodymium(III), terbium(III), thorium(IV) and uranium(VI) on Amberlite XAD-4 resin functionalized with bicine ligands. Talanta 1999; 48(3): 579–584. https://doi.org/10.1016/S0039-9140(98)00274-4

Pan B. C., Zhang Q. R., Zhang W. M., Pan B. J., Du W., Lv L., Zhang Q. J., Xu Z. W., Zhang Q. X. Highly effective removal of heavy metals by polymer-based zirconium phosphate: a case study of lead ion. J. Colloid. Interface. Sci. 2007; 310(1): 99–105. https://doi.org/10.1016/j.jcis.2007.01.064

Pan B., Zhang Q., Du W., Zhang W., Xu Z. Selective heavy metals removal from waters by amorphous zirconium phosphate: behavior and mechanism. Water Res. 2007; 41(14):3103–3111. https://doi.org/10.1016/j.watres.2007.03.004

Jia K., Pan B., Zhang Q., Zhang W., Jiang P., Hong C. Adsorption of Pb2+, Zn2+, and Cd2+ from waters by amorphous titanium phosphate. J. Colloid. Interface. Sci. 2008; 318(2): 160–166. https://doi.org/10.1016/j.jcis.2007.10.043

Cumbal L., Sengupta A. K. Arsenic removal using polymer-supported hydrated iron (III) oxide nanoparticles: Role of Donnan membrane effect. Environ. Sci. Technol. 2005; 39(17): 6508–6515. https://doi.org/10.1021/es050175e

Blaney L. M., Cinar S., SenGupta A. K. Hybrid anion exchanger for trace phosphate removal from water and wastewater. Water Res. 2007; 41(7):1603–1613. https://doi.org/10.1016/j.watres.2007.01.008

Zhang Q., Pan B., Chen X., Zhang W., Lv L., Zhao X. S. Preparation of polymersupported hydrated ferric oxide based on Donnan membrane effect and its application for arsenic removal. Sci. China Ser. B Chem. 2008; 51(4): 379–385. https://doi.org/10.1007/s11426-007-0117-6

Zhang Q., Pan B., Zhang W., Jia K. Selective sorption of lead, cadmium and zinc ions by a polymeric cation exchanger containing nano-Zr(HPO3S)2. Environ. Sci. Technol. 2008; 42 (11): 4140–4145. https://doi.org/10.1021/es800354b

Sylvester P., Westerhoff P., Moller T., Badruzzaman M., Boyd O. A hybrid sorbent utilizing nanoparticles of hydrous iron oxide for arsenic removal from drinking water. Environ. Eng. Sci. 2007; 24(1): 104–112. https://doi.org/10.1089/ees.2007.24.104

DeMarco M. J., Sengupta A. K., Greenleaf J. E. Arsenic removal using a polymeric/inorganic hybrid sorbent. Water Res. 2003; 37(1): 164–176. https://doi.org/10.1016/S0043-1354(02)00238-5

Moller T., Sylvester P. Effect of sililca and pH on arsenic uptake by resin/iron oxide hybrid media. Water Res. 2008; 42(6–7): 1760–1766. https://doi.org/10.1016/j.watres.2007.10.044

Katsoyiannis I. A., Zouboulis A. I. Removal of arsenic from contaminated water sources by sorption onto iron-oxide-coated polymeric materials. Water Res. 2002; 36(20): 5141–5155. https://doi.org/10.1016/S0043-1354(02)00236-1

Pan B., Li Z., Zhang Y., Xu J., Chen L., Dong H., Zhang W. Acid and organic resistant nano-hydrated zirconium oxide (HZO)/polystyrene hybrid adsorbent for arsenic removal from water. Chem. Eng. J. 2014; 248: 290–296. https://doi.org/10.1016/j.cej.2014.02.093

Du Q., Zhang S., Pan B., Lv L., Zhang W., Zhang Q. Effect of spatial distribution and aging of ZVI on the reactivity of resin-ZVI composites for arsenite removal. J. Mater. Sci. 2014; 49 (20): 7073–7079. https://doi.org/10.1007/s10853-014-8412-z

Pan B., Han F., Nie G., Wu B., He K., Lu L. New strategy to enhance phosphate removal from water by hydrous mang-anese oxide. Environ. Sci. Technol. 2014; 48(9): 5101–5107. https://doi.org/10.1021/es5004044

Pulido B. A., Waldron C., Zolotukhin M. G., Nunes S. P. Porous polymeric membranes with thermal and solvent resistance. J. Memb. Sci. 2017; 539: 187–196. https://doi.org/10.1016/j.memsci.2017.05.070

Qadir D., Mukhtar H., Keong L. K. Mixed matrix membranes for water purification applications. Sep. Purif. Rev. 2017; 46: 62–80. https://doi.org/10.1080/15422119.2016.1196460

Qiu G., Ting Y. P. Short-term fouling propensity and flux behavior in an osmotic membrane bioreactor for wastewater treatment. Desalination 2014; 332: 91–99. https://doi.org/10.1016/j.desal.2013.11.010

Rabiee H., Vatanpour V., Farahani M.H.D.A., Zarrabi H. Improvement in flux and antifouling properties of PVC ultrafiltration membranes by incorporation of zinc oxide (ZnO) nanoparticles. Sep. Purif. Technol. 2005; 156: 299–310. https://doi.org/10.1016/j.seppur.2015.10.015

Razali NF, Mohammad A. W., Hilal N. Effects of polyaniline nanoparticles in polyethersulfone ultrafiltration membranes: fouling behaviours by different types of foulant. J. Ind. Eng. Chem. 2014; 20: 3134–3140. https://doi.org/10.1016/j.jiec.2013.11.056

Sabir A., Shafiq M., Islam A., Sarwar A., Dilshad M. R., Shafeeq A., Zahid Butt M. T., Jamil T. Fabrication of tethered carbon nanotubes in cellulose acetate/polyethylene glycol-400 composite membranes for reverse osmosis. Carbohydr. Polym. 2015; 132: 589–597. https://doi.org/10.1016/j.carbpol.2015.06.035

Safarpour M., Vatanpour V., Khataee A., Zarrabi H., Gholami P., Yekavalangi M. E. High flux and fouling resistant reverse osmosis membrane modified with plasma treated natural zeolite. Desalination 2017; 411: 89–100. https://doi.org/10.1016/j.desal.2017.02.012

Shaffer D. L., Tousley M. E., Elimelech M. Influence of polyamide membrane surface chemistry on gypsum scaling behavior. J. Memb. Sci. 2017; 525: 249–256. https://doi.org/10.1016/j.memsci.2016.11.003

Shafi H. Z., Matin A., Akhtar S., Gleason K. K., Zubair S. M., Khan Z. Organic fouling in surface modified reverse osmosis membranes: filtration studies and subsequent morphological and compositional characterization. J. Memb. Sci. 2017; 527: 152–163. https://doi.org/10.1016/j.memsci.2017.01.017

Shao L., Wang Z. X., Zhang Y. L., Jiang Z. X., Liu Y. Y. A facile strategy to enhance PVDF ultrafiltration membrane performance via self-polymerized polydopamine followed by hydrolysis of ammonium fluotitanate. J. Memb. Sci. 2014; 461: 10–21. https://doi.org/10.1016/j.memsci.2014.03.006

Sharma N., Purkait M. K. Impact of synthesized amino alcohol plasticizer on the morphology and hydrophilicity of polysulfone ultrafiltration membrane. J. Memb. Sci. 2017; 522: 202–215. https://doi.org/10.1016/j.memsci.2016.08.068

Son M., Kim H., Jung J., Jo S., Choi H. Influence of extreme concentrations of hydrophilic pore-former on reinforced polyethersulfone ultrafiltration membranes for reduction of humic acid fouling. Chemosphere 2017; 179: 194–201. https://doi.org/10.1016/j.chemosphere.2017.03.101

Subramanian S., Seeram R. New directions in nanofiltration applications are nanofibers the right materials as membranes in desalination? Desalination 2013; 308: 198–208. https://doi.org/10.1016/j.desal.2012.08.014

Tong T., Zhao S., Boo C., Hashmi S. M., Elimelech M. Relating silica scaling in reverse osmosis to membrane surface properties. Environ. Sci. Technol. 2017; 51: 4396–4406. https://doi.org/10.1021/acs.est.6b06411

Tsai H. A., Wang T. Y., Huang S. H., Hu C. C., Hung W. S., Lee K. R., Lai J. Y. The preparation of polyamide/polyacrylonitrile thin film composite hollow fiber membranes for dehydration of ethanol mixtures. Sep. Purif. Technol. 2017; 187: 221–232. https://doi.org/10.1016/j.seppur.2017.06.060

Turek M, Mitko K., Piotrowski K., Dydo P., Laskowska E., Jakóbik-Kolon A. Prospects for high water recovery membrane desalination. Desalination 2017; 401: 180–189. https://doi.org/10.1016/j.desal.2016.07.047

Ulbricht M. Advanced functional polymer membranes. Polymer (Guildf) 2006; 47: 2217–2262. https://doi.org/10.1016/j.polymer.2006.01.084

Vatanpour V., Safarpour M., Khataee A., Zarrabi H., Yekavalangi M. E., Kavian M. A thin film nanocomposite reverse osmosis membrane containing amine-functionalized carbon nanotubes. Sep. Purif. Technol. 2007; 184: 135–143. https://doi.org/10.1016/j.seppur.2017.04.038

Wang C., Li Z., Chen J., Li Z., Yin Y., Cao L., Zhong Y., Wu H. Covalent organic framework modified polyamide nanofiltration membrane with enhanced performance for desalination. J. Memb. Sci. 2017; 523: 273–281. https://doi.org/10.1016/j.memsci.2016.09.055

Wang H., Wang Z. M., Yan X., Chen J., Lang W. Z., Guo Y. J. Novel organic-inorganic hybrid polyvinylidene fluoride ultrafiltration membranes with antifouling and antibacterial properties by embedding N-halamine functionalized silica nanospheres. J. Ind. Eng. Chem. 2017; 52: 295–304. https://doi.org/10.1016/j.jiec.2017.03.059

Wang H., Wei M., Zhong Z., Wang Y. Atomic-layer-deposition-enabled thin-film composite membranes of polyimide supported on nanoporous anodized alumina. J. Memb. Sci. 2017; 535: 56–62. https://doi.org/10.1016/j.memsci.2017.04.026

Wang J. J., Wang Z., Wang J. J., Wang S. Improving the water flux and bio-fouling resistance of reverse osmosis (RO) membrane through surface modification by zwitterionic polymer. J. Memb. Sci. 2016; 493: 188–199. https://doi.org/10.1016/j.memsci.2015.06.036

Wang P., Luo L., Chung T. S. Tri-bore ultra-filtration hollow fiber membranes with a novel triangle-shape outer geometry. J. Memb. Sci. 2014; 452: 212–218. https://doi.org/10.1016/j.memsci.2013.10.033

Wang X., Wang C., Tang C. Y., Hu T., Li X., Ren Y. Development of a novel anaerobic membrane bioreactor simultaneously integrating microfiltration and forward osmosis membranes for low-strength wastewater treatment. J. Memb. Sci. 2017; 527:1–7. https://doi.org/10.1016/j.memsci.2016.12.062

Werber J. R., Deshmukh A., Elimelech M. The critical need for increased selectivity, not increased water permeability, for desalination membranes. Environ. Sci. Technol. Lett. 2016; 3: 112–120. https://doi.org/10.1021/acs.estlett.6b00050

Wu H., Liu Y., Mao L., Jiang C., Ang J., Lu X. Doping polysulfone ultrafiltration membrane with TiO2-PDA nanohybrid for simultaneous self-cleaning and self-protection. J. Memb. Sci. 2017; 532: 20–29. https://doi.org/10.1016/j.memsci.2017.03.010

Yang C., Li X. M., Gilron J., Kong D., Yin Y., Oren Y., Linder C., He T. CF4 plasma-modified superhydrophobic PVDF membranes for direct contact membrane distillation. J. Memb. Sci. 2014; 456: 155–161. https://doi.org/10.1016/j.memsci.2014.01.013

You X., Ma T., Su Y., Wu H., Wu M., Cai H., Sun G., Jiang Z. Enhancing the permeation flux and antifouling performance of polyamide nanofiltration membrane by incorporation of 8 Polymers for Membrane Filtration in Water Purification 189 PEG-POSS nanoparticles. J. Memb. Sci. 2017; 540: 454–463. https://doi.org/10.1016/j.memsci.2017.06.084

Yu H., Zhang Y., Sun X., Liu J., Zhang H. Improving the antifouling property of polyethersulfone ultrafiltration membrane by incorporation of dextran grafted halloysite nanotubes. Chem. Eng. J. 2014; 237:322–328. https://doi.org/10.1016/j.cej.2013.09.094

Zhang G., Lu S., Zhang L., Meng Q., Shen C., Zhang J. Novel polysulfone hybrid ultrafiltration membrane prepared with TiO2-g-HEMA and its antifouling characteristics. J. Memb. Sci. 2013; 436: 163–173. https://doi.org/10.1016/j.memsci.2013.02.009

Zhang H., Li Bin, Pan J., Qi Y., Shen J., Gao C., Van der Bruggen B. Carboxyl-functionalized graphene oxide polyamide nanofiltration membrane for desalination of dye solutions containing monovalent salt. J. Memb. Sci. 2017; 539: 128–137. https://doi.org/10.1016/j.memsci.2017.05.075

Zhang Y., Guo M., Pan G., Yan H., Xu J., Shi Y., Shi H., Liu Y. Preparation and properties of novel pH-stable TFC membrane based on organic-inorganic hybrid composite materials for nanofiltration. J. Memb. Sci. 2015; 476: 500–507. https://doi.org/10.1016/j.memsci.2014.12.011

Zhang Y., Zhao C., Yan H., Pan G., Guo M., Na H., Liu Y. Highly chlorine-resistant multilayer reverse osmosis membranes based on sulfonated poly(arylene ether sulfone) and poly(vinyl alcohol). Desalination 2014; 336: 58–63. https://doi.org/10.1016/j.desal.2013.12.034

Zhao C., Lv J., Xu X., Zhang G., Yang Y., Yang F. Highly antifouling and antibacterial performance of poly (vinylidene fluoride) ultrafiltration membranes blending with copper oxide and graphene oxide nanofillers for effective wastewater treatment. J. Colloid. Interface. Sci. 2017; 505: 341–351. https://doi.org/10.1016/j.jcis.2017.05.074

Zhou D., Zhu L., Fu Y., Zhu M., Xue L. Development of lower cost seawater desalination processes using nanofiltration technologies a review. Desalination 2015; 376: 109–116. https://doi.org/10.1016/j.desal.2015.08.020

Ng L. Y., Mohammad A. W., Leo C. P., Hilal N. Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination 2013; 308: 15–33. https://doi.org/10.1016/j.desal.2010.11.033

Oh H. J., McGrath J. E., Paul D. R. Kinetics of poly(ethylene glycol) extraction into water from plasticized disulfonated poly(arylene ether sulfone) desalination membranes prepared by solvent-free melt processing. J. Memb. Sci. 2017; 524: 257–265. https://doi.org/10.1016/j.memsci.2016.11.036

Oh H. J., Park J., Inceoglu S., Villaluenga I., Thelen J. L., Jiang X., McGrath J. E., Paul D. R. Formation of disulfonated poly(arylene ether sulfone) thin film desalination membranes plasticized with poly(ethylene glycol) by solvent-free melt extrusion. Polymer (Guildf) 2017; 109: 106–114. https://doi.org/10.1016/j.polymer.2016.12.035

Orooji Y., Faghih M., Razmjou A., Hou J., Moazzam P., Emami N., Aghababaie M., Nourisfa F., Chen V., Jin W. Nanostructured mesoporous carbon polyethersulfone composite ultrafiltration membrane with significantly low protein adsorption and bacterial adhesion. Carbon N Y 2017; 111: 689–704. https://doi.org/10.1016/j.carbon.2016.10.055

Prince J. A., Bhuvana S., Boodhoo K.V.K., Anbharasi V., Singh G. Synthesis and characterization of PEG-Ag immobilized PES hollow fiber ultrafiltration membranes with long lasting antifouling properties. J. Memb. Sci. 2014; 454: 538–548. https://doi.org/10.1016/j.memsci.2013.12.050

McVerry B. T., Wong M. C. Y., Marsh K. L., Temple J. A. T., Marambio-Jones C., Hoek E. M. V., Kaner R. B. Scalable antifouling reverse osmosis membranes utilizing perfluorophenyl azide photochemistry. Macromol. Rapid. Commun. 2014; 35: 1528–1533. https://doi.org/10.1002/marc.201400226

Mehrparvar A., Rahimpour A. Surface modification of novel polyether sulfone amide (PESA) ultrafiltration membranes by grafting hydrophilic monomers. J. Ind. Eng. Chem. 2015; 28: 359–368. https://doi.org/10.1016/j.jiec.2015.03.016

Mercer K. L. State of the water industry: strengthening our connections. J Am Water Works Assoc. 2017; 109: 56–65. https://doi.org/10.5942/jawwa.2017.109.0090

Mi Y. F., Zhao F. Y., Guo Y. S., Weng X. D., Ye C. C., An Q. F. Constructing zwitterionic surface of nanofiltration membrane for high flux and antifouling performance. J. Memb. Sci. 2017; 541:29–38. https://doi.org/10.1016/j.memsci.2017.06.091

Ibrahim Abdelfattah, Wael Abdelwahab, Ashraf M. El-Shamy, Montmorillonitic clay as a Cost-Effective, Eco Friendly and Sustainable Adsorbent for Physicochemical Treatment of Contaminated Water, Egypt. J. Chem. 2022; 65(2): 687-694.

Samar M. Mouneir, Ali M. El-Hagrassi, Ashraf M. El-Shamy. A Review on the Chemical Compositions of Natural Products and Their Role in Setting Current Trends and Future Goals Egypt. J. Chem. 2022; 65(5): 491-506.