Methods of Non-Pressure Granulation of Industrial Waste

Authors

  • Katarzyna Lawinska ?UKASIEWICZ Research Network - Institute of Leather Industry, Lodz, Poland
  • Andrzej Rostocki ?UKASIEWICZ Research Network - Institute of Leather Industry, Lodz, Poland
  • Andrzej Obraniak Lodz University of Technology, Faculty of Process and Environmental Engineering, Lodz, Poland
  • Remigiusz Modrzewski Lodz University of Technology, Faculty of Process and Environmental Engineering, Lodz, Poland

DOI:

https://doi.org/10.31437/2414-2115.2021.07.8

Keywords:

Agglomeration, granules, waste shavings, carbonation lime mud

Abstract

This paper discusses the potential for using non-pressure agglomeration methods in industrial waste processing for the purpose of its reuse in a closed cycle. Waste products of the leather industry (shavings) and the food industry (carbonation lime mud and molasses), together with easily accessible mineral fillers (dolomite, gypsum, limestone flour) underwent granulation. Grain size composition and the value of compressive force destruction of granules were specified for agglomerates produced in line with the selected methods. The resultant granulated products were characterised by a regular shape and good breaking resistance (more than 10N). The proposed methods make it possible to process and change the physical properties of a waste product and provide a free-flowing agglomerated granular bed containing both mineral and organic components, which is easy to store, transport and dose.

References

Holger L, Lampke, J. Technical and economic aspects of granulation of coal. In: Litvinenko V. (ed.) XVIII International Coal Preparation Congress 2016; 383-389. Springer. https://doi.org/10.1007/978-3-319-40943-6_57

AlAlaween WH, Mahfouf M, Salman AD. Predictive modelling of the granulation process using a systems-engineering approach. Powder Technol 2016; 302: 265-274. https://doi.org/10.1016/j.powtec.2016.08.049

Rodrigues RF, Leite SR, Santos DA, Barrozo MAS. Drum granulation of single super phosphate fertilizer: Efect of process variables and optimization. Powder Technol 2017; 321: 251-258. https://doi.org/10.1016/j.powtec.2017.08.036

Quatrini Li X, Mba D, Costantino F. Fault diagnosis of a granulator operating under time-varying conditions using canonical variate analysis. Energies 2020; 13: 4427. https://doi.org/10.3390/en13174427

Heim A, Obraniak A, Gluba T. Effect of bed wetting rate on the bulk density of granulated products. Przem Chem 2008; 87: 154-157.

Sobiecka E, Obraniak A, Antizar-Ladislao B. Influence of mixture ratio and pH to solidification/stabilization process of hospital solid waste incineration ash in Portland cement. Chemosphere 2014; 111: 18-23. https://doi.org/10.1016/j.chemosphere.2014.03.057

Obidzi?ski S. Utilization of post-production waste of potato pulp and buckwheat hulls in the form of pellets. Pol J Environ Stud 2014; 23: 1391-1395.

Siuda R, Kwiatek J, Szufa S, Obraniak A, Piersa P, Adrian ?, Modrzewski R, ?awi?ska K, Siczek, K, Olejnik TP. Industrial verification and research development of lime–gypsum fertilizer granulation method. Minerals 2021; 11: 119. https://doi.org/10.3390/min11020119

Vincevica-Gaile Z, Stankevica K, Irtiseva K, Shishkin A, Obuka V, Celma S, Ozolins J, Klavins M. Granulation of fly ash and biochar with organic lake sediments – A way to sustainable utilization of waste from bioenergy production. Biomass and Bioenergy 2019; 125: 23-33. https://doi.org/10.1016/j.biombioe.2019.04.004

Chen H, Mangwandi C, Rooney D. Production of solid biofuel granules from drum granulation of bio-waste with silicate-based binders. Powder Technol 2019; 354: 231-239. https://doi.org/10.1016/j.powtec.2019.05.074

Obidzi?ski S, Karczewski K, Siegie? G, Joka M, Rostocki A. Analysis of physicochemical properties of granulates from food processing waste in terms of their use as a groundbait for fish. Przem Chem 2021; 100: 694-697.

Mangwandi C, Albadarin AB, Jiang Tao L, Allen S, Walker GM. Development of a value-added soil conditioner from high shear co-granulation of organic waste and limestone powder. Powder Technol 2014; 252: 33-41. https://doi.org/10.1016/j.powtec.2013.10.039

Olejnik TP. Analysis of the breakage rate function for selected process parameters in quartzite milling. Chem Eng Process 2012; 33: 117-129. https://doi.org/10.2478/v10176-012-0011-4

Kryszak D, Bartoszewicz A, Szufa S, Piersa P, Obraniak A, Olejnik TP. Modeling of transport of loose products with the use of the non-grid method of discrete elements (DEM), Processes 2020; 8: 1489. https://doi.org/10.3390/pr8111489

Olejnik TP. Milling kinetics of chosen rock materials under dry conditions considering strength and statistical properties of bed. Physicochem Probl Miner Process 2011; 46: 145-154.

Berber H, Tamm K, Leinus M-L, Kuusik R, Tõnsuaadu K, Paaver P, Uibu M. Accelerated carbonation technology granulation of industrial waste: Effects of mixture composition on product properties. Waste Manage Res 2020; 38: 142-155. https://doi.org/10.1177/0734242X19886646

Ozga M, Borowski G. The use of granulation to reduce dusting and manage of fine coal. Journal of Ecological Engineering 2018; 19: 218-224. https://doi.org/10.12911/22998993/89794

Pesonen J, Kuokkanen V, Kuokkanen T, Illikainen M. Co-granulation of bio-ash with sewage sludge and lime for fertilizer use. J Environ Chem Eng 2016; 4: 4817-4821. https://doi.org/10.1016/j.jece.2015.12.035

Peng H, Shan X, Kang J, Ling X, Wang D. Influence of rotary disk configurations on droplets characteristics in molten slag granulation for waste heat recovery. Appl Therm Eng 2018; 135: 269-279. https://doi.org/10.1016/j.applthermaleng.2018.02.063

?awi?ska K, Serweta W, Modrzewski R. Qualitative evaluation of the possible application of collagen fibres: Composite materials with mineral fillers as insoles for healthy footwear. Fibres Text East Eur 2018; 26: 81-85. https://doi.org/10.5604/01.3001.0012.2536

?awi?ska K, Serweta W, Modrzewski R. Studies on water absorptivity and desorptivity of tannery shavings-based composites with mineral additives. Przem Chem 2019; 98: 106-109.

?awi?ska K, Modrzewski R, Serweta W. Tannery shavings and mineral additives as a basis of new composite materials. Fibres Text East Eur 2019; 27: 89-93. https://doi.org/10.5604/01.3001.0013.2906

?awi?ska K, Serweta W, Popovych N, Sieczy?ska K, Decka S, Wo?nicki D, Ogrodowczyk D, Rostocki A, Sprynskyy M. Microbiological and chemical analysis of bamboo textile materials and leathers modified with bamboo extract at the tanning stage. Fibres Text East Eur 2021; 29: 33-39.

Raja VL. Sustainable development approach in friction studies of nylon composites. J Miner Met Mater Eng 2017; 3: 66-70.

Sandhya KV, Abinandan S, Vedaraman N, Velappan KC. Extraction of fleshing oil from waste limed fleshings and biodiesel production. Waste Manag 2016; 48: 638-643. https://doi.org/10.1016/j.wasman.2015.09.033

Getahun E. Experimental investigation and characterization of biodiesel production from leather industry fleshing wastes. Int J Renew Sustain Energy 2013; 2: 120-129. https://doi.org/10.11648/j.ijrse.20130203.17

Šánek L, Pecha J, Kolomazník K, Ba?inová M. Biodiesel production from tannery fleshings: Feedstock pretreatment and process modeling. Fuel 2015; 148: 16-24. https://doi.org/10.1016/j.fuel.2015.01.084

Agustini CB, Spier F, da Costa M, Gutterres M. Biogas production for anaerobic co-digestion of tannery solid wastes under presence and absence of the tanning agent. Resour Conserv Recycl 2018; 130: 51-59. https://doi.org/10.1016/j.resconrec.2017.11.018

Amdouni S, Trabelsi ABH, Elasmi AM, Chagtmi R, Haddad K, Jamaaoui F, Khedhira H, Chérif C. Tannery fleshing wastes conversion into high value-added biofuels and biochars using pyrolysis process. Fuel 2021; 294: 120423. https://doi.org/10.1016/j.fuel.2021.120423

Huang X, Yu F, Peng Q, Huang Y. Superb adsorption capacity of biochar derived from leather shavings for Congo red. RSC Adv 2018; 8: 29781-29788. https://doi.org/10.1039/C8RA06370B

Louarrat M., Rahman AN, Bacaoui A, Yaacoubi A. Removal of chromium Cr(VI) of tanning effluent with activated carbon from tannery solid wastes. Am J Phys Chem 2017; 6: 103. https://doi.org/10.11648/j.ajpc.20170606.11

Pinheiro NSC, Perez-Lopez OW, Gutterres M. Solid leather wastes as adsorbents for cationic and anionic dye removal. Environ Technol 2020; 2020: 1-9. https://doi.org/10.1080/09593330.2020.1825531

Arcibar-Orozco JA, Barajas-Elias BS, Caballero-Briones F, Nielsen L, Rangel-Mendez JR. Hybrid carbon nanochro-mium composites prepared from chrome-tanned leather shavings for dye adsorption. Water Air Soil Pollut 2019; 230: 142. https://doi.org/10.1007/s11270-019-4194-x

?awi?ska K, Obraniak A, Modrzewski R. Granulation process of waste tanning shavings. Fibres Text East Eur 2019; 27: 107-110. https://doi.org/10.5604/01.3001.0012.9994

?awi?ska K, Szufa S, Modrzewski R, Obraniak A, W??yk T, Rostocki A, Olejnik TP. Obtaining granules from waste tannery shavings and mineral additives by wet pulp granulation. Molecules 2020; 25: 5419. https://doi.org/10.3390/molecules25225419

?awi?ska K, Szufa S, Obraniak A, Olejnik T, Siuda R, Kwiatek J, Ogrodowczyk D. Disc granulation process of carbonation lime mud as a method of post-production waste management. Energies 2020: 13: 3419. https://doi.org/10.3390/en13133419

Obraniak A. Analysis of the phenomenon of nuclei mass transfer during the disc granulation. Przem Chem 2017; 96(1): 241-244. https://doi.org/10.15199/62.2017.1.30

Lawinska K, Modrzewski R,Wodzinski, P. Mathematical and empirical description of screen blocking. Granular Matter 2016; 18: 13. https://doi.org/10.1007/s10035-016-0622-4

?awinska K, Wodzinski P, Modrzewski R. A method for determining sieve holes blocking degree. Physicochem Probl Miner Process 2015; 51: 15-22.

Lawinska K, Modrzewski R. Analysis of sieve holes blocking in a vibrating screen and a rotary and drum screen. Physicochem Probl Miner Process 2017; 53: 812-828.

Do??y?ska M, Obidzi?ski S, Kowczyk-Sadowy M, Krasowska M. Densification and combustion of cherry stones. Energies 2019; 12: 3042. https://doi.org/10.3390/en12163042

Szufa S, Piersa P, Adrian ?, Sielski J, Grzesik M, Romanowska-Duda Z, Piotrowski K, Lewandowska W. Acquisition of torrefied biomass from jerusalem artichoke grown in a closed circular system using biogas plant waste. Molecules 2020; 25: 3862. https://doi.org/10.3390/molecules25173862

Szufa S, Wielgosi?ski G, Piersa P, Czerwi?ska J, Dziku? M, Adrian ?, Lewandowska W, Marczak M. Torrefaction of straw from oats and maize for use as a fuel and additive to organic fertilizers - TGA analysis, kinetics as products for agricultural purposes. Energies 2020; 13: 2064. https://doi.org/10.3390/en13082064

Szufa S, Dzikuc M, Adrian L, Piersa P, Romanowska-Duda Z. Lewandowska W, Marczak M, Blaszczuk A, Piwowar A. Torrefaction of oat straw to use as solid biofuel, an additive to organic fertilizers for agriculture purposes and activated carbon - TGA analysis, kinetics, E3S Web Conf 2020; 154: 02004. https://doi.org/10.1051/e3sconf/202015402004

?awi?ska K, Laso?-Rydel M, Gendaszewska D, Grzesiak E, Sieczy?ska K, Gaidau C, Epure, DG, Obraniak A. Coating of seeds with collagen hydrolysates from leather waste. Fibres Text East Eur 2019; 27: 59-64. https://doi.org/10.5604/01.3001.0013.1819

?awi?ska K, Gendaszewska D, Grzesiak E, Jagie??o J, Obraniak A. Use of tanning waste in seed production. Przem Chem 2017; 96: 2344-2347.

?awi?ska K, Gendaszewska D, Grzesiak E, Laso?-Rydel M, Obraniak A. Coating of leguminosarum seeds with collagen hydrolyzates from tanning waste. Przem Chem 2017; 96: 1877-1880.

Obraniak A, Gluba T, ?awi?ska K, Derbiszewski B. Minimisation of environmental efects related with storing fly ash from combustion of hard coal. Environ Prot Eng 2018; 44: 177-189. https://doi.org/10.37190/epe180412

Hafid HS, ’Aini ARN, Mokhtar MN, Talib AT, Baharuddin AS, Shah UKM. Over production of fermentable sugar for bioethanol production from carbohydrate-rich Malaysian food waste via sequential acid-enzymatic hydrolysis pretreatment. Waste Manag 2017; 67: 95-105. https://doi.org/10.1016/j.wasman.2017.05.017

Karray R, Karray F, Loukil S, Mhiri N, Sayadi S. Anaerobic co-digestion of Tunisian green macroalgae Ulva rigida with sugar industry wastewater for biogas and methane production enhancement. Waste Manag 2016; 61: 171-178. https://doi.org/10.1016/j.wasman.2016.11.042

Ozkan L, Erguder TH, Demirer G. Investigation of the effect of culture type on biological hydrogen production from sugar industry wastes. Waste Manag 2010; 30: 792-798. https://doi.org/10.1016/j.wasman.2009.11.002

Mella B, Glanert AC, Gutterres M. Removal of chromium from tanning wastewater and its reuse. Process Saf Environ Prot 2015; 95: 195-201. https://doi.org/10.1016/j.psep.2015.03.007

Downloads

Published

2021-12-31

Issue

Section

Articles