Optimization of the Second Harmonic Generation in a Realistic Model of Two Coupled Lens-Shaped Core/Shell Quantum Dots for Terahertz Applications

Authors

  • M. Choubani Departement of Physique, Laboratoire de Micro-Optoélectronique et Nanostructure (LR99ES29), Faculty of Sciences Monastir, University of Monastir, Tunisia
  • H. Maaref Departement of Physique, Laboratoire de Micro-Optoélectronique et Nanostructure (LR99ES29), Faculty of Sciences Monastir, University of Monastir, Tunisia
  • F. Saidi Departement of Physique, Laboratoire de Micro-Optoélectronique et Nanostructure (LR99ES29), Faculty of Sciences Monastir, University of Monastir, Tunisia

DOI:

https://doi.org/10.31437/2414-2115.2021.07.6

Keywords:

 Core/shell, Hydrostatic pressure, Lens-shaped quantum dots, Second Harmonic Generation, Temperature

Abstract

In this paper, we make a perfect study of the Second Harmonic Generation coefficient of two coupled InAs/GaAs core/shell quantum dots. The discrete intra-band confined energy levels and their corresponding envelope wave functions are calculated implicitly via the Finite Difference Method of second order. The Second Harmonic Generation has been adjusted and controlled for terahertz applications when numerous important parameters such as: pressure, temperature , wetting layer, inter-dot separation distance, core dimensions and shell sizes assumed different values. It is found that the Second Harmonic Generation magnitude is strongly affected by the spacer width between the coupled lens-shaped quantum dots and a red/blue- shift is induced. Also, observations indicate the possibility of tailoring the shell’s width, consequently the encapsulation layer. In addition, It is found that the considered realistic model of lens-shaped form of the considered nanostructure causes a red-shift of the Second Harmonic Generation spectrum as compared to a spherical model. Moreover, obtained results also reveal that as the temperature (pressure) increases, the Second Harmonic Generation spectrum experiences a blue-shift (red-shift). Furthermore, other significant results are that the Second Harmonic Generation coefficient of coupled core/shell quantum dots is influenced significantly as compared to a single core/shell and the considered structure would be useful in various applications in terahertz region.

References

Franken H, Weinreich P. Generation of Optical Harmonics. Physical Review Letters 1961; 7(4): 118-119. https://doi.org/10.1103/PhysRevLett.7.118

Ellis-Davies GCR. Two-photon microscopy for chemical neuroscience. ACS chemical neuroscience April 2011; 2(4): 185- 197. https://doi.org/10.1021/cn100111a

Gibson E, Masihzadeh O, Lei T, Kahook DAM. Multiphoton microscopy for ophthalmic imaging. Journal of ophthalmology January 2011; 2011: 870-879. https://doi.org/10.1155/2011/870879

Kirejev V, Gulbrand S, Borglin J, Simonsson C, Ericson MB. Multiphoton microscopy - a powerful tool in skin research and topical drug delivery science. Journal of Drug Delivery Science and Technology 2012; 22(3): 250-259. https://doi.org/10.1016/S1773-2247(12)50036-5

Supatto W, Truong TV, Débarre D, Beaurepaire E. Advances in multiphoton microscopy for imaging embryos. Current Opinion in Genetics & Development 2011; 21(5): 538-548. https://doi.org/10.1016/j.gde.2011.08.003

Jacobsohn M, Barin U. Size-dependance of Second Harmonic Generation in CdSe Nanocrystal quantum Dots. The Journal of Physical Chemistry B 2000; 104(1): 1-5. https://doi.org/10.1021/jp9925076

Zhang Y, Wang X, Fu D, Cheng J, Shen Y, Liu J, Lu Z. Secondorder optical nonlinearity study of CdS nanoparticles via Hyper- Rayleigh scattering. Journal of Physics and Chemistry of Solids 2001; 62: 903-906. https://doi.org/10.1016/S0022-3697(00)00249-3

Petrov DV, Santos BS, Pereira GAL, de Mallo Donega C. Size and Band-gap dependences of the First Hyperpolarizability of Cd(x)Zn(1-x)S Nanocrystals. Journal of Physical Chemistry B 2002; 106. https://doi.org/10.1021/jp010617i

Winter S, Zielinski M, Chauvat D, Zyss J, Oron D. The Second Order Nonlinear Susceptibility of Quantum Confined Semiconductors - A Single Dot Study. Journal of Physical Chemistry C 2011; 4558-4563. https://doi.org/10.1021/jp111790t

Khordad R, Bahramiyan H. Electronic and Optical Properties of a Lens Shaped Quantum Dot under Magnetic Field: Second and Third-Harmonic Generation. Commun Theor Phys 2014; 62: 283- 289. https://doi.org/10.1088/0253-6102/62/2/17

Shao S, Guo K-X, Zhang Z-H, Li N, Peng C. Studies on the second-harmonic generations in cubical quantum dots with applied electric field. Physica B 2011; 406(3): 393-396. https://doi.org/10.1016/j.physb.2010.10.078

Martínez-Orozcoa JC, Rojas-Briseñoa JG, Rodríguez- Magdalenoa KA, Rodríguez-Vargasa I, Mora-Ramos ME, Restrepo RL, Ungand F, Kasapoglue E, Duque CA. Effect of the magnetic field on the nonlinear optical rectification and second and third harmonic generation in double ?-doped GaAs quantum wells. Physica B 2017; 525: 30-35. https://doi.org/10.1016/j.physb.2017.08.082

Li T, Wang Q, Guo X, et al. The saturation density property of (B)InAs/GaAs quantum dots grown by metal-organic chemical vapor deposition. Physica E 2012; 44(7-8): 1146-1151. https://doi.org/10.1016/j.physe.2012.01.002

Nishi K, Kageyama T, Yamaguchi M, et al. Molecular beam epitaxial growths of high-optical-gain InAs quantum dots on GaAs for long-wavelength emission. Journal of Crystal Growth 2012; 378: 459-462. https://doi.org/10.1016/j.jcrysgro.2012.12.046

Himwas C, Songmuang R, Dang LS, et al. Thermal stability of the deep ultraviolet emission from AlGaN/AlN StranskiKrastanov quantum dots. Applied Physics Letters 2012; 101(24): Article ID 241914. https://doi.org/10.1063/1.4770075

Hassanabadi H, Liu G, Lu L. Nonlinear optical rectification and the second-harmonic generation in semi-parabolic and semiinverse squared quantum wells. Solid State Communications 2012; 152(18): 1761-1766. https://doi.org/10.1016/j.ssc.2012.05.023

Barati M, Rezaei G, Vahdani MRK. Binding energy of a hydrogenic donor impurity in an ellipsoidal finite-potential quantum dot,” Physica Status Solidi B 2007; 244(7): 2605- 2610. https://doi.org/10.1002/pssb.200642543

Liu G, Guo K, Wua Q, Wub JH. Polaron effects on the optical rectification and the second harmonic generation in cylindrical quantum dots with magnetic field. Superlattices and Microstructures 2013; 53: 173-183. https://doi.org/10.1016/j.spmi.2012.09.007

Badounas DA, Souliotis M, Garoufalis CS. Theoretical Study of Linear and Nonlinear Properties of ZnO/MgO Core/Shell and Inverted Core/Shell Quantum Dots. Journal of Advanced Physics 2013; 6(4): 477-481. https://doi.org/10.1166/jap.2017.1361

El Hadi M, El Moussaouy A, Nougaoui A, Bria D. Simultaneous effect of electric field and temperature on bound exciton states in semiconductor quantum dot. Journal of Materials and Environmental Sciences 2017; 8(3): 911-920.

Bejan D, Stan C, Niculescu EC. Optical properties of an elliptic quantum ring: Eccentricity and electric field effects. Optical Materials 2018; 78: 207-219. https://doi.org/10.1016/j.optmat.2018.02.008

El Haouari M, Talbi A, Feddi E, ElGhazi H, Oukerroume A, Dujardin F. Linear and nonlinear optical properties of a single dopant in strained AlAs/GaAs spherical core/shell quantum dots. Optics Communications 2017; 383: 231-237. https://doi.org/10.1016/j.optcom.2016.09.019

Khordad R, Rezaei G, Vaseghi B, Taghizadeh F, Azadi Kenary H. Study of optical properties in a cubic quantum dot. Opt Quant Electron 2011; 42: 587-600. https://doi.org/10.1007/s11082-011-9481-8

Chen JX, et al. Tuning InAs/GaAs quantum dot properties under Stranski-Krastanov growth mode for 1.3 ?m applications. J Appl Phys 2002; 91: 6710. https://doi.org/10.1063/1.1476069

Bouzaïene L, Sfaxi L, Baira M, Maaref H, Bru-Chevallier C. Power density and temperature dependent multi-excited states in InAs/GaAs quantum dots. J Nanopart Res 2011; 13: 257-262. https://doi.org/10.1007/s11051-010-0024-1

Nasa S, Purohit SP. Linear and third order nonlinear optical properties of GaAs quantum dot in terahertz region. Physica E 2020; 118: 113913. https://doi.org/10.1016/j.physe.2019.113913

El-Yadria M, Aghoutanea N, El Aouamia A, Feddia E, Dujardinb F, Duquec CA. Temperature and hydrostatic pressure effects on single dopant states in hollow cylindrical core-shell quantum dot. Applied Surface Science 2018; 441: 204-209. https://doi.org/10.1016/j.apsusc.2018.01.195

Vurgaftman I, Meyer JR, Ram-Mohan LR. Band parameters for III-V compound semiconductors and their alloys. J Appl Phys 2001; 89(11): 5818-5827. https://doi.org/10.1063/1.1368156

Safarpour Gh, Moradi M, Barati M. Hydrostatic pressure and temperature effects on the electronic energy levels of a spherical quantum dot placed atthe center of a nano-wire. Superlattices Microstruct 2012; 52, 687-696. https://doi.org/10.1016/j.spmi.2012.06.019

Chuang SL. Physics of Optoelectronic Devices: New York Wiley: 1995.

Bir GL, Pikus. E. Summetry and strain-induced effects in semiconductor. New York Wiley: 1974.

Gong L, Shu Y-C, Xu J-J, Zhu Q-S, Wang Z-G. Numerical analysis on quantum dots-in-a-well structures by finite difference method. Superlattices and Microstructures 2013; 60: 311-319. https://doi.org/10.1016/j.spmi.2013.05.012

Yek WC, Gopir G, Othman AP. Calculation of Electronic Properties of InAs/GaAs Cubic, Spherical and Pyramidal Quantum Dots with Finite Difference Method. Advanced Materials Research 2012; 501: 347-351. https://doi.org/10.4028/www.scientific.net/AMR.501.347

Ben Mahrsia R, Choubani M, Bouzaiene L, Maaref H. Nonlinear optical rectification in a vertically coupled lens-shaped InAs/GaAs quantum dots with wetting layers under hydrostatic pressure and temperature. Journal of Alloys and Compounds 2016; 671: 200- 207. https://doi.org/10.1016/j.jallcom.2016.02.106

Choubani M, Makhlouf D, Saidi F, Maaref H. Enhancement of the second harmonic generation in a coupled lens-shaped quantum dots under wetting layer, temperature, pressure, and electric field effects. Optical and Quantum Electronics 2020; 52(2). https://doi.org/10.1007/s11082-019-2184-2

Choubani M, Maaref H, Saidi F. Nonlinear optical properties of lens-shaped core/shell quantum dots coupled with a wetting layer: effects of transverse electric field, pressure, and temperature. Journal of Physics and Chemistry of Solids 2020; 138: 109226. https://doi.org/10.1016/j.jpcs.2019.109226

Karabulut I, Atav U, Safac H, Tomak M. Second harmonic generation in asymmetric rectangular uantum well under hydrostatic pressure. Physica B 2007; 393: 133-138. https://doi.org/10.1016/j.physb.2006.12.074

Downloads

Published

2021-05-05

Issue

Section

Articles