Precipitation Strengthening and Corrosion Behaviour of a 6061 Al-Mg-Si-Cu Alloy

Authors

  • K.S. Ghosh Department of Metallurgical and Materials Engineering, National Institute of Technology, Durgapur – 713 209, India

DOI:

https://doi.org/10.31437/2414-2115.2021.07.4

Keywords:

 6061 Al-Mg-Si-Cu alloy, Precipitation strengthening, Electrochemical polarization, Passivity, Hysteresis loop

Abstract

Precipitation strengthening, behaviour of a 6061 Al-Mg-Si alloy tempers has been assessed by hardness measurement, X-ray diffraction (XRD), and optical microscopy. Variation of hardness with precipitation time of the alloy solutionised and water quenched state indicated characteristic age strengthening, behaviour. Electrochemical behaviour of the alloy of different tempers was assessed by potentiodynamic polarization studies in 3.5 wt. % NaCl solution (~ pH 7) and in 3.5 wt. % NaCl at pH 12. Polarization diagrams showed shifting of corrosion potential (Ecorr) towards more negative potential with increasing precipitation time. Cyclic polarization diagrams at 3.5 wt. % NaCl at pH 12 exhibited distinct passivity phenomenon. Optical micrographs of the corroded surfaces showed general corrosion and extensive pitting corrosion as well.

References

Na Wang, Zhimin Zhou and Guimin Lu, Microstructural Evolution of 6061 Alloy during Isothermal Heat Treatment. J. Mater. Sci. Technol 2011; 27: 8-14. https://doi.org/10.1016/S1005-0302(11)60018-2

Eskin DG. Decomposition of supersaturated solid solutions in Al–Cu–Mg–Si alloys. J Materials Science 2003: 38(2): 279- 90.

Polmear IJ. Light alloys metallurgy of the light metals. London, UK, Arnold Publication, 1995.

Brooks CR. Heat Treatment, Structure and Properties of Nonferrous Alloys. American Society for Metals, Metals Park, Ohio, USA, 1982.

Charkrabarti DJ, Laughin DE, Phase relations and precipitation in Al–Mg– Si alloys with Cu additions. Progress Material Science 2004: 49: 389-410. https://doi.org/10.1016/S0079-6425(03)00031-8

Oppenheim T, Tewfic S, Scheck T, Klee TV, Lomeli S, Dahir W, Youngren P, Aizpuru N, Clark Jr NR., Lee EW, Ogren J, Es-Said OS. On the correlation of mechanical and physical properties of 6061-T6 and 7249-T76 aluminium alloys. Engineering Failure Analysis 2007; 14: 218-25. https://doi.org/10.1016/j.engfailanal.2005.10.013

Gaber A, Mossad Ali A, Matsuda K, Kawabata T, Yamazaki T, Ikenob S. Study of the developed precipitates in Al– 0.63Mg–0.37Si–0.5Cu (wt.%) alloy by using DSC and TEM techniques. Journal of Alloys and Compounds 2007; 432: 149–55. https://doi.org/10.1016/j.jallcom.2006.06.004

Davis JR. Corrosion of aluminium and aluminium alloys, ASM International, Materials Park, Ohio, USA, 1999.

Nikseresht Z, Karimzadeh F, Golozar MA and Heidarbeigy M. Effect of heat treatment on microstructure and corrosion behaviour of Al6061 alloy weldment. Materials and Design 201; 31: 2643-648. https://doi.org/10.1016/j.matdes.2009.12.001

Maisonnette D, Suery M, Nelias D, Chaudet P, Epicier T, Effect of heat treatment on the microstructure and mechanical properties of a 6061 aluminium alloy. Materials Science and Engineering A 2011; 528: 2718-724. https://doi.org/10.1016/j.msea.2010.12.011

Gaber A, Matsuda K. Mosaad A. Ali, Zou Y, Ikeno S, Mater. Sci. Technol. 2004; 20: 1627–631. https://doi.org/10.1179/026708304X6086

Matsuda K, Gamada H, Fujii K, Uetani Y, Sato T, Kamio A, Ikeno S. Met. Mat. Trans. A 1998; 29A: 1161–167. https://doi.org/10.1007/s11661-998-0242-7

Zhang W, Frankel GS. Transitions between pitting and intergranular corrosion in 2024. Electrochem. Acta 2003; 48: 1193–210. https://doi.org/10.1016/S0013-4686(02)00828-9

Guillaumin V, Mankowski G. Localised corrosion of 2024 T351 aluminium alloy in chloride media. Corro. Sci. 1999; 41: 421–38. https://doi.org/10.1016/S0010-938X(98)00116-4

Warner TJ, Schmidt MP, Sommer F, Bellot D. Characterization of corrosion initiation on 2024 aluminium alloy by atomic force microscopy. Z. Metallkd 1995; 86: 494– 01. https://doi.org/10.1515/ijmr-1995-860708

Cavnaugh MK, Birbilis N, Buchheit RG, F. Bovard F. Investigating localized corrosion susceptibility arising from Sc containing intermetallic Al3Sc in high strength Al-alloys. Scripta Mater 2007; 56: 995-98. https://doi.org/10.1016/j.scriptamat.2007.01.036

Kyriakopoulou HP, Farantos CN, Vazdirvanidis A, Markoulis AG, Xanthis CA, Chatzidouros EV and Pantelis DI. Investigation of the Hydrogen Embrittlement Susceptibility of AA5083-H111 and AA6082-T6 Dissimilar Friction Stir Welds. JMEPG 2019; 28: 7687–701. https://doi.org/10.1007/s11665-019-04489-y

Li L, Zhang B. Tian B, Zhou Y,. Wang JQ, Han EH, and Kea W. SVET Study of Galvanic Corrosion of Al/Mg2Si Couple in Aqueous Solutions at Different pH. Journal Electrochem Soc 2017; 164: C240-C249. https://doi.org/10.1149/2.0671706jes

Escalera-Lozano R, Pech-Canul MK, Pech-Canul MA, Montoya-Dávila M and Uribe-Salas A, The Role of Mg2Si in the Corrosion Behavior of Al-Si-Mg Alloys for Pressureless Infiltration. The Open Corrosion Journal 2010; 3: 73-79. https://doi.org/10.2174/1876503301003010073

Jones RH, Ricker RE. Stress-Corrosion Cracking: Materials and Evaluation. Ohio, USA. ASM International, 1992: Ch 1 and Ch 8.

Ghosh KS, Das K, Chatterjee U K. Correlation of stress corrosion cracking behavior and open circuit potential in Al- Li-Cu-Mg-Zr alloys. Materials and Corrosion 2007; 58: 181- 87. https://doi.org/10.1002/maco.200603987

Boag A, Taylor RJ, Muster TH, Goodmann N, McCulloch D, Ryan C, Rout B, Jamieson D, Huges AE. Stable pit formation on AA2024-T3 in an NaCl environment. Corrosion Science 2010: 52: 90-103. https://doi.org/10.1016/j.corsci.2009.08.043

Ralston KD, Birbilis N, Cavannaugh MK, Weyland D, Muddle BC, Marceau R K W. Role of nanostructure in pitting of Al- Mg-Si alloys. Electrochemica Acta 2010; 55: 7834-842. https://doi.org/10.1016/j.electacta.2010.02.001

Birbilis N. Cavanaugh MK, Kovarik L, Buchheit RG. Nanoscale dissolution phenomenon in Al-Mg-Si alloys. Electrochem Comm 2008; 10: 32-37. https://doi.org/10.1016/j.elecom.2007.10.032

Xia L, AkiyamE, Frankel G, McCreery R. Storage and release of soluble hexavalent chromium from chromate conversion coatings. J. Electrochem Soc 2000: 147: 2556–562. https://doi.org/10.1149/1.1393568

Kairy, Shravan and Nick Birbilis. Clarifying the role of Mg2Si and Si in localised corrosion of Al-alloys by quasi in-situ transmission electron microscopy. CORROSION 2020; 10.5006/3457. https://doi.org/10.5006/3457

Ringer SP, Hono K, Sakurat T, Polmear IJ. Cluster strengthening, in an aged Al-Mg-Si alloy. Scripta Mat 1997; 36: 517-21. https://doi.org/10.1016/S1359-6462(96)00415-0

Starink MJ, Wang SC. The thermodynamics of and strengthening due to co-clusters: general theory and application to the case of Al-Mg-Si alloys. Acta Material 2009; 57 (8): 2376-389. https://doi.org/10.1016/j.actamat.2009.01.021

Reena Kumari PD, Jagannath Nayak, Nityananda Shetty A. Corrosion behaviour of 6061/Al-15 vol. pct. SiC(p) composite and the base alloy in sodium hydroxide solution. Arabian Journal of Chemistry 2012. https://doi.org/10.1016/j.arabjc.2011.12.003

Downloads

Published

2021-05-05

Issue

Section

Articles