A Brief Review on the Enhancement of Surface Finish for Metal Additive Manufacturing

Authors

  • Jiong Zhang Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
  • Yan Jin Lee Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
  • Hao Wang Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore

DOI:

https://doi.org/10.31437/2414-2115.2021.07.1

Keywords:

 Post-processing, additive manufacturing, 3D printing, surface finishing

Abstract

Additive manufacturing (AM) has been attracting tremendous attention in recent decades thanks to its distinct advantages over the conventional subtractive manufacturing techniques with regard to customisation, complex geometry and near-net-shape fabrication, etc. To date, the application of AM technology has been extended to various fields of engineering, including automobile, aerospace, healthcare and biomedical industries. Although some AM techniques have been relatively successful at customised and lightweight products, large-scale technology adoption in the industry is still limited by the poor surface finish and inadequate geometric accuracy. In this regard, post-processing is crucial to the manufacturing process, which encompasses the removal of support structures, tuning microstructures to modify material properties, correcting form errors, and improving surface finish. This paper discusses the processes to improve surface finish, which include the well-established conventional subtractive manufacturing techniques. It is desirable, yet challenging, to integrate conventional manufacturing processes with the unique features of the additively manufactured components. This review aims to provide the researchers and practitioners from academia and industries the recent developments in the area of surface finish improvement for additive manufacturing as well as to further explore the future advancement of additive manufacturing and its post-processing technologies.

References

Kumbhar NN, Mulay A V. Post processing methods used to improve surface finish of products which are manufactured by additive manufacturing technologies: a review. J Inst Eng Ser C Springer 2018; 99(4): 481-87. https://doi.org/10.1007/s40032-016-0340-z

Chang S, Liu A, Ong CYA, Zhang L, Huang X, Tan YH, et al. Highly effective smoothening of 3D-printed metal structures via overpotential electrochemical polishing. Mater Res Lett Taylor & Francis 2019; 7(7): 282-89. https://doi.org/10.1080/21663831.2019.1601645

Hashimoto F, Yamaguchi H, Krajnik P, Wegener K, Chaudhari R, Hoffmeister HW, et al. Abrasive fine-finishing technology. CIRP Ann - Manuf Technol CIRP 2016; 65(2): 597-620. https://doi.org/10.1016/j.cirp.2016.06.003

Mower TM, Long MJ. Mechanical behavior of additive manufactured, powder-bed laser-fused materials. Mater Sci Eng A Elsevier 2016; 651: 198-213. https://doi.org/10.1016/j.msea.2015.10.068

Greitemeier D, Dalle Donne C, Syassen F, Eufinger J, Melz T. Effect of surface roughness on fatigue performance of additive manufactured Ti-6Al-4V. Mater Sci Technol Taylor & Francis 2016; 32(7): 629-34. https://doi.org/10.1179/1743284715Y.0000000053

Zhang J, Chaudhari A, Wang H. Surface quality and material removal in magnetic abrasive finishing of selective laser melted 316L stainless steel. J Manuf Process Elsevier 2019; 45: 710-19. https://doi.org/10.1016/j.jmapro.2019.07.044

Strano G, Hao L, Everson RM, Evans KE. Surface roughness analysis, modelling and prediction in selective laser melting. J Mater Process Technol Elsevier 2013; 213(4): 589-97. https://doi.org/10.1016/j.jmatprotec.2012.11.011

Calignano F, Manfredi D, Ambrosio EP, Iuliano L, Fino P. Influence of process parameters on surface roughness of aluminum parts produced by DMLS. Int J Adv Manuf Technol Springer 2013; 67(9-12): 2743-51. https://doi.org/10.1007/s00170-012-4688-9

Boschetto A, Bottini L, Veniali F. Roughness modeling of AlSi10Mg parts fabricated by selective laser melting. J Mater Process Technol 2017; 241: 154-63. https://doi.org/10.1016/j.jmatprotec.2016.11.013

Tian Y, Tomus D, Rometsch P, Wu X. Influences of processing parameters on surface roughness of Hastelloy X produced by selective laser melting. Addit Manuf 2017; 13: 103-12. https://doi.org/10.1016/j.addma.2016.10.010

Karlsson J, Snis A, Engqvist H, Lausmaa J. Characterization and comparison of materials produced by Electron Beam Melting (EBM) of two different Ti-6Al-4V powder fractions. J Mater Process Technol Elsevier 2013; 213(12): 2109-18. https://doi.org/10.1016/j.jmatprotec.2013.06.010

Cao Q, Zhang J, Chang S, Fuh JYH, Wang H. The effect of support structures on maraging steel MS1 parts fabricated by selective laser melting at different building angles. Rapid Prototyping Journal 2020[Online] 2020. https://doi.org/10.1108/RPJ-11-2019-0287

Cao Q, Bai Y, Zhang J, Shi Z, Fuh JYH, Wang H. Removability of 316L stainless steel cone and block support structures fabricated by Selective Laser Melting (SLM). Mater Des Elsevier 2020; 108691. https://doi.org/10.1016/j.matdes.2020.108691

Cao Q, Shi Z, Bai Y, Zhang J, Zhao C, Ying J, et al. A novel method to improve the removability of cone support structures in selective laser melting of 316L stainless steel. J Alloys Compd Elsevier 2020; 157133. https://doi.org/10.1016/j.jallcom.2020.157133

Kaynak Y, Kitay O. The effect of post-processing operations on surface characteristics of 316L stainless steel produced by selective laser melting. Addit Manuf Elsevier 2019; 26: 84- 93. https://doi.org/10.1016/j.addma.2018.12.021

Bordatchev E V., Hafiz AMK, Tutunea-Fatan OR. Performance of laser polishing in finishing of metallic surfaces. Int J Adv Manuf Technol 2014; 73(1-4): 35-52. https://doi.org/10.1007/s00170-014-5761-3

Lamikiz A, Sanchez JA, Lacalle LNL de, Arana JL. Laser polishing of parts built up by selective laser sintering. Int J Mach Tools Manuf Elsevier 2007; 47(12): 2040-50. https://doi.org/10.1016/j.ijmachtools.2007.01.013

Yung KC, Zhang SS, Duan L, Choy HS, Cai ZX. Laser polishing of additive manufactured tool steel components using pulsed or continuous-wave lasers. Int J Adv Manuf Technol Springer 2019; 105(1-4): 425-40. https://doi.org/10.1007/s00170-019-04205-z

Yasa E, Deckers J, Kruth J-P. The investigation of the influence of laser re-melting on density, surface quality and microstructure of selective laser melting parts. Rapid Prototyp J Emerald Group Publishing Limited 2011; 17(5): 312-27. https://doi.org/10.1108/13552541111156450

Ma CP, Guan YC, Zhou W. Laser polishing of additive manufactured Ti alloys. Opt Lasers Eng Elsevier 2017; 93: 171-77. https://doi.org/10.1016/j.optlaseng.2017.02.005

Li Y-H, Wang B, Ma C-P, Fang Z-H, Chen L-F, Guan Y-C, et al. Material Characterization, Thermal Analysis, and Mechanical Performance of a Laser-Polished Ti Alloy Prepared by Selective Laser Melting. Metals (Basel) Multidisciplinary Digital Publishing Institute 2019; 9(2): 112. https://doi.org/10.3390/met9020112

Bhaduri D, Penchev P, Batal A, Dimov S, Soo SL, Sten S, et al. Laser polishing of 3D printed mesoscale components. Appl Surf Sci Elsevier 2017; 405: 29-46. https://doi.org/10.1016/j.apsusc.2017.01.211

Obeidi MA, McCarthy E, O’Connell B, Ul Ahad I, Brabazon D. Laser Polishing of Additive Manufactured 316L Stainless Steel Synthesized by Selective Laser Melting. Materials (Basel) Multidisciplinary Digital Publishing Institute 2019; 12(6): 991. https://doi.org/10.3390/ma12060991

Braun M, Hofele M, Schanz J, Ruck S, Pohl M, Börret R, et al. Time-based offline track planning of robot guided laser applications for complex 3D freeform surfaces. Laser 3D Manufacturing VI 2019[Online] International Society for Optics and Photonics 2019. https://doi.org/10.1117/12.2508340

Rosa B, Mognol P, Hascoët J-Y. Laser polishing of additive laser manufacturing surfaces 2015. https://doi.org/10.2351/1.4906385

Alrbaey K, Wimpenny D, Tosi R, Manning W, Moroz A. On optimization of surface roughness of selective laser melted stainless steel parts: A statistical study. J Mater Eng Perform Springer 2014; 23(6): 2139-48. https://doi.org/10.1007/s11665-014-0993-9

Ramos JA, Bourell DL, Beaman JJ. Surface over-melt during laser polishing of indirect-SLS metal parts. MRS Online Proc Libr Arch Cambridge University Press 2002; 758. https://doi.org/10.1557/PROC-758-LL1.9

Ramos JA, Murphy J, Wood K, Bourell DL, Beaman JJ. Surface Roughness Enhancement of Indirect-SLS Metal Parts by Laser Surface Polishing 28. 2001 International Solid Freeform Fabrication Symposium 2001[Online] 2001.

Witkin D, Helvajian H, Steffeney L, Hansen W. Laser postprocessing of Inconel 625 made by selective laser melting. Laser 3D Manufacturing III 2016[Online] International Society for Optics and Photonics 2016. https://doi.org/10.1117/12.2213745

Dadbakhsh S, Hao L, Kong CY. Surface finish improvement of LMD samples using laser polishing. Virtual Phys Prototyp Taylor & Francis 2010; 5(4): 215-21. https://doi.org/10.1080/17452759.2010.528180

Yung KC, Xiao TY, Choy HS, Wang WJ, Cai ZX. Laser polishing of additive manufactured CoCr alloy components with complex surface geometry. J Mater Process Technol Elsevier 2018. https://doi.org/10.1016/j.jmatprotec.2018.06.019

Richter B, Blanke N, Werner C, Vollertsen F, Pfefferkorn FE. Effect of initial surface features on laser polishing of Co-Cr- Mo alloy made by powder-bed fusion. JOM Springer 2019; 71(3): 912-19. https://doi.org/10.1007/s11837-018-3216-2

Schanz J, Hofele M, Hitzler L, Merkel M, Riegel H. Laser polishing of additive manufactured AlSi10Mg parts with an oscillating laser beam. In: Machining, Joining and Modifications of Advanced Materials Springer 2016; pp. 159-69. https://doi.org/10.1007/978-981-10-1082-8_16

Electropolishing

[cited 2017]. Available at: https: //en.wikipedia.org/wiki/Electropolishing.

Han W, Fang F. Fundamental aspects and recent developments in electropolishing. Int J Mach Tools Manuf Elsevier 2019. https://doi.org/10.1016/j.ijmachtools.2019.01.001

Yi R, Zhang Y, Zhang X, Fang F, Deng H. A generic approach of polishing metals via isotropic electrochemical etching. Int J Mach Tools Manuf Elsevier 2020; 103517. https://doi.org/10.1016/j.ijmachtools.2020.103517

Pyka G, Burakowski A, Kerckhofs G, Moesen M, Bael S Van, Schrooten J, et al. Surface modification of Ti6Al4V open porous structures produced by additive manufacturing. Adv Eng Mater Wiley Online Library 2012; 14(6): 363-70. https://doi.org/10.1002/adem.201100344

Yang L, Lassell A, Paiva GPV. Further study of the electropolishing of Ti6Al4V parts made via electron beam melting. Proceedings of the International Solid Freeform Fabrication (SFF) Symposium, Austin, TX 2015[Online] 2015.

García-Blanco MB, Díaz-Fuentes M, Garrido O, Vara G, Díez JA. Electropolishing process to reduce surface roughness of a Ti alloy fabricated by Selective Laser Melting. Euro PM2015 Proceedings 2015[Online] The European Powder Metallurgy Association: Reims, France 2015.

Dong G, Marleau-Finley J, Zhao YF. Investigation of electrochemical post-processing procedure for Ti-6Al-4V lattice structure manufactured by direct metal laser sintering (DMLS). Int J Adv Manuf Technol Springer 2019; 104(9-12): 3401-17. https://doi.org/10.1007/s00170-019-03996-5

Urlea V, Brailovski V. Electropolishing and electropolishingrelated allowances for powder bed selectively laser-melted Ti-6Al-4V alloy components. J Mater Process Technol Elsevier 2017; 242: 1-11. https://doi.org/10.1016/j.jmatprotec.2016.11.014

Mohammadian N, Turenne S, Brailovski V. Surface finish control of additively-manufactured Inconel 625 components using combined chemical-abrasive flow polishing. J Mater Process Technol Elsevier 2018; 252: 728-38. https://doi.org/10.1016/j.jmatprotec.2017.10.020

Baicheng Z, Xiaohua L, Jiaming B, Junfeng G, Pan W, Chennan S, et al. Study of selective laser melting (SLM) Inconel 718 part surface improvement by electrochemical polishing. Mater Des Elsevier 2017; 116: 531-37. https://doi.org/10.1016/j.matdes.2016.11.103

Alrbaey K, Wimpenny DI, Al-Barzinjy AA, Moroz A. Electropolishing of re-melted SLM stainless steel 316L parts using deep eutectic solvents: 3°— 3 full factorial design. J Mater Eng Perform Springer 2016; 25(7): 2836-46. https://doi.org/10.1007/s11665-016-2140-2

Lyczkowska-Widlak E, Lochynski P, Nawrat G, Chlebus E. Comparison of electropolished 316L steel samples manufactured by SLM and traditional technology. Rapid Prototyp J Emerald Publishing Limited 2019. https://doi.org/10.1108/RPJ-03-2018-0060

Tyagi P, Goulet T, Riso C, Stephenson R, Chuenprateep N, Schlitzer J, et al. Reducing the roughness of internal surface of an additive manufacturing produced 316 steel component by chempolishing and electropolishing. Addit Manuf Elsevier 2019; 25: 32-38. https://doi.org/10.1016/j.addma.2018.11.001

Demir AG, Previtali B. Additive manufacturing of cardiovascular CoCr stents by selective laser melting. Mater Des Elsevier 2017; 119: 338-50. https://doi.org/10.1016/j.matdes.2017.01.091

MILLET PS. Method for Smoothing and Polishing Metals Via Ion Transport Free Solid Bodies and Solid Bodies for Performing the Method. 2018[Online] Google Patents 2018.

MILLET PS, PIRIZ PMNG, BUNUEL AG, XANDRI GT. Device for burnishing and smoothing metal parts. 2019[Online] Google Patents 2019.

GPAINNOVA. The New Concept of Polishing

[cited 2020]. Available at: https: //www.dlyte.es/.

Bai Y, Zhao C, Yang J, Fuh JYH, Lu WF, Weng C, et al. Dry mechanical-electrochemical polishing of selective laser melted 316L stainless steel. Mater Des Elsevier 2020; 108840. https://doi.org/10.1016/j.matdes.2020.108840

Preston FW. The theory and design of plate glass polishing machines. J Glas Technol 1927; 11(44): 214-56.

Löber L, Flache C, Petters R, Ku?hn U, Eckert J. Comparison of different post processing technologies for SLM generated 316l steel parts. Rapid Prototyp J Emerald Group Publishing Limited 2013; 19(3): 173-79. https://doi.org/10.1108/13552541311312166

Zhang J. Micro-blasting of 316L tubular lattice manufactured by laser powder bed fusion. Proceedings of the 19th International Conference of the European Society for Precision Engineering and Nanotechnology, EUSPEN 2019 2019[Online] Bilbao, ES 2019.

Wild M de, Schumacher R, Mayer K, Schkommodau E, Thoma D, Bredell M, et al. Bone regeneration by the osteoconductivity of porous titanium implants manufactured by selective laser melting: a histological and micro computed tomography study in the rabbit. Tissue Eng Part A Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA 2013; 19(23-24): 2645-54. https://doi.org/10.1089/ten.tea.2012.0753

Duval-Chaneac MS, Han S, Claudin C, Salvatore F, Bajolet J, Rech J. Experimental study on finishing of internal laser melting (SLM) surface with abrasive flow machining (AFM). Precis Eng Elsevier 2018; 54: 1-6. https://doi.org/10.1016/j.precisioneng.2018.03.006

Han S, Salvatore F, Rech J, Bajolet J. Abrasive flow machining (AFM) finishing of conformal cooling channels created by selective laser melting (SLM). Precis Eng Elsevier 2020. https://doi.org/10.1016/j.precisioneng.2020.03.006

Peng C, Fu Y, Wei H, Li S, Wang X, Gao H. Study on improvement of surface roughness and induced residual stress for Additively Manufactured metal parts by Abrasive Flow Machining. Procedia CIRP Elsevier 2018; 71: 386-89. https://doi.org/10.1016/j.procir.2018.05.046

Yamaguchi H, Fergani O, Wu P-Y. Modification using magnetic field-assisted finishing of the surface roughness and residual stress of additively manufactured components. CIRP Ann Elsevier 2017; 66(1): 305-08. https://doi.org/10.1016/j.cirp.2017.04.084

Zhang J, Hu J, Wang H, Kumar AS, Chaudhari A. A novel magnetically driven polishing technique for internal surface finishing. Precis Eng 2018; 54. https://doi.org/10.1016/j.precisioneng.2018.05.015

Zhang J, Wang H, Kumar AS, Jin M. Experimental and theoretical study of internal finishing by a novel magnetically driven polishing tool. Int J Mach Tools Manuf Elsevier 2020; 103552. https://doi.org/10.1016/j.ijmachtools.2020.103552

Zhang J, Jin M, Wang H. Polishing performance of a novel polishing tool in magnetically driven internal finishing process. Proceedings of The 8th International Conference of Asian Society for Precision Engineering and Nanotechnology (ASPEN 2019) 2019[Online] Matsue, Japan 2019.

Nagalingam AP, Yeo SH. Controlled hydrodynamic cavitation erosion with abrasive particles for internal surface modification of additive manufactured components. Wear Elsevier 2018; 414: 89-100. https://doi.org/10.1016/j.wear.2018.08.006

Tan KL, Yeo SH. Surface finishing on IN625 additively manufactured surfaces by combined ultrasonic cavitation and abrasion. Addit Manuf Elsevier 2020; 31: 100938. https://doi.org/10.1016/j.addma.2019.100938

Nagalingam AP, Yuvaraj HK, Yeo SH. Synergistic Effects in Hydrodynamic Cavitation Abrasive Finishing for Internal Surface-Finish Enhancement of Additive-Manufactured Components. Addit Manuf Elsevier 2020; 101110. https://doi.org/10.1016/j.addma.2020.101110

Dow TA, Miller MH, Falter PJ. Application of a fast tool servo for diamond turning of nonrotationally symmetric surfaces. Precis Eng 1991; 13(4): 243-50. https://doi.org/10.1016/0141-6359(91)90001-Y

Brinksmeier E, Riemer O. Measurement of optical surfaces generated by diamond turning. Int J Mach Tools Manuf 1998; 38(5-6): 699-705. https://doi.org/10.1016/S0890-6955(97)00120-X

Kranz J, Herzog D, Emmelmann C. Design guidelines for laser additive manufacturing of lightweight structures in TiAl6V4. J Laser Appl Laser Institute of America 2014; 27(S1): S14001. https://doi.org/10.2351/1.4885235

Horn TJ, Harrysson OLA. Overview of Current Additive Manufacturing Technologies and Selected Applications. Sci Prog SAGE Publications Ltd 2012; 95(3): 255-82. https://doi.org/10.3184/003685012X13420984463047

Newswander T, Crowther B, Gubbels G, Senden R. Aluminum alloy AA-6061 and RSA-6061 heat treatment for large mirror applications. Material Technologies and Applications to Optics, Structures, Components, and Sub- Systems 2013[Online] International Society for Optics and Photonics 2013. https://doi.org/10.1117/12.2024369

Leuteritz G, Lachmayer R. Additive manufacturing of reflective optics: evaluating finishing methods. Proc. SPIE 10523, Laser 3D Manufacturing V, 105230N 2018[Online] 2018. https://doi.org/10.1117/12.2289998

Vukobratovich D, Schaefer JP. Large stable aluminum optics for aerospace applications. Proc. SPIE 8125, Optomechanics 2011: Innovations and Solutions, 81250T 2011[Online] 2011. https://doi.org/10.1117/12.892039

Hilpert E, Hartung J, Risse S, Eberhardt R, Tu?nnermann A. Precision manufacturing of a lightweight mirror body made by selective laser melting. Precis Eng 2018; 53: 310-17. https://doi.org/10.1016/j.precisioneng.2018.04.013

Hilpert E, Hartung J, Lukowicz H von, Herffurth T, Heidler N. Design, additive manufacturing, processing, and characterization of metal mirror made of aluminum silicon alloy for space applications. Opt Eng 2019; 58(9): 1-9. https://doi.org/10.1117/1.OE.58.9.092613

Hartung J, Beier M, Risse S. Novel applications based on freeform technologies. Proc. SPIE 10692, Optical Fabrication, Testing, and Metrology VI, 106920K 2018[Online] 2018. https://doi.org/10.1117/12.2313100

Steinkopf R, Gebhardt A, Scheiding S, Rohde M, Stenzel O, Gliech S, et al. Metal mirrors with excellent figure and roughness. Proc. SPIE 7102, Optical Fabrication, Testing, and Metrology III, 71020C 2008[Online] 2008. https://doi.org/10.1117/12.797702

Bai Y, Shi Z, Lee YJ, Wang H. Optical surface generation on additively manufactured AlSiMg0. 75 alloys with ultrasonic vibration-assisted machining. J Mater Process Technol Elsevier 2020; 116597. https://doi.org/10.1016/j.jmatprotec.2020.116597

Dornfield D, Lee D-E. Introduction to precision manufacturing. In: Dornfeld D, Lee D-E, Eds. Precision Manufacturing Springer US: Boston, MA 2008; pp. 1-33. https://doi.org/10.1007/978-0-387-68208-2

Ikawa N, Donaldson RR, Komanduri R, König W, Aachen TH, McKeown PA, et al. Ultraprecision metal cutting — The past, the present and the future. CIRP Ann 1991; 40(2): 587- 94. https://doi.org/10.1016/S0007-8506(07)61134-2

Taniguchi N. Current status in, and future trends of, ultraprecision machining and ultrafine materials processing. CIRP Ann 1983; 32(2): 573-82. https://doi.org/10.1016/S0007-8506(07)60185-1

Lu L, Zhang J, Fuh JYH, Han J, Wang H. Time-optimal tool motion planning with tool-tip kinematic constraints for robotic machining of sculptured surfaces. Robot Comput Integr Manuf Elsevier 2020; 65: 101969. https://doi.org/10.1016/j.rcim.2020.101969

Lei L, Zhang J, Tian X, Han J, Wang H. Tool path optimization for robotic surface machining by using samplingbased motion planning algorithms. J Manuf Sci Eng 2020; 1- 28. https://doi.org/10.1115/1.4047734

Rahman MA, Amrun MR, Rahman M, Kumar AS. Variation of surface generation mechanisms in ultra-precision machining due to relative tool sharpness (RTS) and material properties. Int J Mach Tools Manuf 2017; 115(June 2016): 15-28. https://doi.org/10.1016/j.ijmachtools.2016.11.003

Chan K., Cheung C., Ramesh M., Lee W., To S. A theoretical and experimental investigation of surface generation in diamond turning of an Al6061/SiCp metal matrix composite. Int J Mech Sci 2001; 43(9): 2047-68. https://doi.org/10.1016/S0020-7403(01)00028-5

Wang SJ, To S, Cheung CF. An investigation into materialinduced surface roughness in ultra-precision milling. Int J Adv Manuf Technol 2013; 68(1): 607-16. https://doi.org/10.1007/s00170-013-4781-8

Sweeney M, Acreman M, Vettese T, Myatt R, Thompson M. Application and testing of additive manufacturing for mirrors and precision structures. Proc.SPIE 2015[Online] 2015. https://doi.org/10.1117/12.2189202

Shamoto E, Moriwaki T. Study on elliptical vibration cutting. CIRP Ann 1994; 43(1): 35-38. https://doi.org/10.1016/S0007-8506(07)62158-1

Ma C, Shamoto E, Moriwaki T, Wang L. Study of machining accuracy in ultrasonic elliptical vibration cutting. Int J Mach Tools Manuf 2004; 44(12-13): 1305-10. https://doi.org/10.1016/j.ijmachtools.2004.04.014

Zhang X, Liu K, Kumar AS, Rahman M. A study of the diamond tool wear suppression mechanism in vibrationassisted machining of steel. J Mater Process Technol 2014; 214(2): 496-506. https://doi.org/10.1016/j.jmatprotec.2013.10.002

Zhang X, Deng H, Liu K. Oxygen-shielded ultrasonic vibration cutting to suppress the chemical wear of diamond tools. CIRP Ann 2019; 68(1): 69-72. https://doi.org/10.1016/j.cirp.2019.04.026

Zhang X, Arif M, Liu K, Kumar AS, Rahman M. A model to predict the critical undeformed chip thickness in vibrationassisted machining of brittle materials. Int J Mach Tools Manuf 2013; 69: 57-66. https://doi.org/10.1016/j.ijmachtools.2013.03.006

Chaudhari A, Soh ZY, Wang H, Kumar AS. Rehbinder effect in ultraprecision machining of ductile materials. Int J Mach Tools Manuf Elsevier 2018; 133: 47-60. https://doi.org/10.1016/j.ijmachtools.2018.05.009

Chaudhari A, Wang H. Effect of surface-active media on chip formation in micromachining. J Mater Process Technol Elsevier 2019; 271: 325-35. https://doi.org/10.1016/j.jmatprotec.2019.04.011

Zhang J, Lee YJ, Wang H. Mechanochemical effect on the microstructure and mechanical properties in ultraprecision machining of AA6061 alloy. J Mater Sci Technol 2021; 69: 228-38. https://doi.org/10.1016/j.jmst.2020.08.024

Zhang J, Lee YJ, Wang H. Surface Texture Transformation in Micro-Cutting of AA6061-T6 with the Rehbinder Effect. Int J Precis Eng Manuf Technol Springer 2020; 1-12. https://doi.org/10.1007/s40684-020-00260-0

Lee YJ, Shen Y-K, Wang H. Suppression of Polycrystalline Diamond Tool Wear with Mechanochemical Effects in Micromachining of Ferrous Metal. J Manuf Mater Process 2020; 4(3): 81. https://doi.org/10.3390/jmmp4030081

Lee YJ, Wang H. Current understanding of surface effects in microcutting. Mater Des Elsevier 2020; 108688. https://doi.org/10.1016/j.matdes.2020.108688

Lee YJ, Chong JY, Chaudhari A, Wang H. Enhancing Ductile-mode Cutting of Calcium Fluoride Single Crystals with Solidified Coating. Int J Precis Eng Manuf Technol Springer 2019; 1-11. https://doi.org/10.1007/s40684-019-00126-0

Cai SL, Chen Y, Ye GG, Jiang MQ, Wang HY, Dai LH. Characterization of the deformation field in large-strain extrusion machining. J Mater Process Technol 2015; 216: 48-58. https://doi.org/10.1016/j.jmatprotec.2014.08.022

Saeidi K, Akhtar F. Microstructure-tailored stainless steels with high mechanical performance at elevated temperature. In: Duriagina Z, Ed. Stainless Steels and Alloys IntechOpen: Rijeka 2019. https://doi.org/10.5772/intechopen.80468

Tucho WM, Lysne VH, Austbø H, Sjolyst-Kverneland A, Hansen V. Investigation of effects of process parameters on microstructure and hardness of SLM manufactured SS316L. J Alloys Compd 2018; 740: 910-25. https://doi.org/10.1016/j.jallcom.2018.01.098

Flynn JM, Shokrani A, Newman ST, Dhokia V. Hybrid additive and subtractive machine tools-Research and industrial developments. Int J Mach Tools Manuf Elsevier 2016; 101: 79-101. https://doi.org/10.1016/j.ijmachtools.2015.11.007

Thompson MK, Moroni G, Vaneker T, Fadel G, Campbell RI, Gibson I, et al. Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints. CIRP Ann Technol Elsevier 2016; 65(2): 737-60. https://doi.org/10.1016/j.cirp.2016.05.004

Lee S, Ahmadi Z, Pegues JW, Mahjouri-Samani M, Shamsaei N. Laser polishing for improving fatigue performance of additive manufactured Ti-6Al-4V parts. Opt Laser Technol Elsevier 2021; 134: 106639. https://doi.org/10.1016/j.optlastec.2020.106639

Yan J, Asami T, Harada H, Kuriyagawa T. Fundamental investigation of subsurface damage in single crystalline silicon caused by diamond machining. Precis Eng 2009; 33(4): 378-86. https://doi.org/10.1016/j.precisioneng.2008.10.008

Yan J, Asami T, Harada H, Kuriyagawa T. Crystallographic effect on subsurface damage formation in silicon microcutting. CIRP Ann CIRP 2012; 61(1): 131-34. https://doi.org/10.1016/j.cirp.2012.03.070

Wang H, Riemer O, Rickens K, Brinksmeier E. On the mechanism of asymmetric ductile-brittle transition in microcutting of (111) CaF2 single crystals. Scr Mater Elsevier B.V. 2016; 114: 21-26. https://doi.org/10.1016/j.scriptamat.2015.11.030

Wang H, Senthil Kumar A, Riemer O. On the theoretical foundation for the microcutting of calcium fluoride single crystals at elevated temperatures. Proc Inst Mech Eng Part B J Eng Manuf 2018; 232(6): 1123-29. https://doi.org/10.1177/0954405416666907

Kannan S, Kishawy HA. Surface characteristics of machined aluminium metal matrix composites. Int J Mach Tools Manuf 2006; 46(15): 2017-25. https://doi.org/10.1016/j.ijmachtools.2006.01.003

Kaynak Y, Tobe H, Noebe RD, Karaca HE, Jawahir IS. The effects of machining on the microstructure and transformation behavior of NiTi Alloy. Scr Mater 2014; 74: 60-63. https://doi.org/10.1016/j.scriptamat.2013.10.023

Kaynak Y, Karaca HE, Jawahir IS. Cutting Speed Dependent Microstructure and Transformation Behavior of NiTi Alloy in Dry and Cryogenic Machining. J Mater Eng Perform 2015; 24(1): 452-60. https://doi.org/10.1007/s11665-014-1247-6

Guo Y, Saldana C, Dale Compton W, Chandrasekar S. Controlling deformation and microstructure on machined surfaces. Acta Mater 2011; 59(11): 4538-47. https://doi.org/10.1016/j.actamat.2011.03.076

Downloads

Published

2021-05-05

Issue

Section

Articles