Predictive Tools and in Silico Approaches used in Solubility and Dissolution Studies

Authors

  • Nastaran Hashemzadeh Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran and Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
  • Abolghasem Jouyban Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran and Faculty of Pharmacy, Near East University, PO BOX: 99138 Nicosia, North Cyprus, Mersin 10, Turkey

DOI:

https://doi.org/10.31437/2309-4435.2022.10.01

Keywords:

Solubility, Dissolution, In silico, Molecular dynamic, Machine learning, QSPR models

Abstract

Solubility and dissolution studies are notable areas of pharmaceutical science. Various in vitro conventional approaches are performed to investigate these factors. Before a new drug is released, it must undergo rigorous testing for FDA approval, where the preparation of solutions of the drug candidate is required to conduct the tests. Despite experimental determinations of solubility and dissolution tests, in silico techniques have become widespread in this area due to the various restrictions imposed by the drug discovery process. Herein, we aim to review the current in silico strategies in solubility and dissolution studies, and explore recent advances in this field.

References

Mittal B. How to develop Robust solid oral dosage forms: from conception to post-approval: Academic press; 2016.

Flynn GLJPJoPS, Technology. Solubility Concepts and Their Applications to the Formulation of Pharmaceutical Systems: Part I. Theoretical Foundations 1984; 38(5): 202-9.

Bandopadhyay S, Bandyopadhyay N, Deb PK, Singh C, Tekade RK. Preformulation studies of drug substances, protein, and peptides: role in drug discovery and pharmaceutical product development. Dosage form design considerations: Elsevier; 2018. p. 401-33. https://doi.org/10.1016/B978-0-12-814423-7.00012-5

Dressman JB, Krämer J. Pharmaceutical dissolution testing: Taylor & Francis Boca Raton, FL: ; 2005. https://doi.org/10.1201/9780849359170

Amidon GL, Lennernäs H, Shah VP, Crison JRJPr. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability 1995; 12(3): 413-20.

Health UDo, Services H, Food, Administration D, Evaluation CfD, Research. Guidance for Industry, Waiver of In vivo Bioavailability and Bioequivalence Studies for Immediate Release Solid Oral Dosage Forms Based on A Biopharmaceutics Classification System. CDER/FDA (US Department of Health and Human Services FaDA, Center for Drug …; 2000.

Balakin KV, Savchuk NP, Tetko IVJCmc. In silico approaches to prediction of aqueous and DMSO solubility of drug-like compounds: trends, problems and solutions 2006; 13(2): 223-41. https://doi.org/10.2174/092986706775197917

Behera A, Sahoo S, Patil SJDPL. Enhancement of solubility: A pharmaceutical overview 2010; 2(2): 310-8.

Zhang W, Haser A, Hou HH, Nagapudi KJMP. Evaluation of accuracy of amorphous solubility advantage calculation by comparison with experimental solubility measurement in buffer and biorelevant media 2018; 15(4): 1714-23. https://doi.org/10.1021/acs.molpharmaceut.8b00125

Livingstone DJJCTiMC. Theoretical property predictions 2003; 3(10): 1171-92. https://doi.org/10.2174/1568026033452078

Anand O, Yu LX, Conner DP, Davit BMJTAj. Dissolution testing for generic drugs: an FDA perspective 2011; 13(3): 328-35. https://doi.org/10.1208/s12248-011-9272-y

Shah VP, Noory A, Noory C, McCullough B, Clarke S, Everett R, et al. In vitro dissolution of sparingly water-soluble drug dosage forms 1995; 125(1): 99-106. https://doi.org/10.1016/0378-5173(95)00123-Z

Boni JE, Brickl RS, Dressman J, Pfefferle MLJDT. Instant FaSSIF and FeSSIF-biorelevance meets practicality 2009; 16(3): 41-5. https://doi.org/10.14227/DT160309P41

Shohin I, Grebenkin DY, Malashenko E, Stanishevskii YM, Ramenskaya GJDT. A brief review of the FDA dissolution methods database 2016; 23(3): 6-10. https://doi.org/10.14227/DT230316P6

Aragones J, Sanz E, Vega CJTJoCP. Solubility of NaCl in water by molecular simulation revisited 2012; 136(24): 244508. https://doi.org/10.1063/1.4728163

Wiebe H, Louwersheimer J, Weinberg NJMP. Molecular dynamic studies of the solubility of sodium chloride: fast calculations using seed crystalline cluster probe 2015; 113(21): 3176-81. https://doi.org/10.1080/00268976.2015.1011247

Paluch AS, Cryan III DD, Maginn EJJJoC, Data E. Predicting the solubility of the sparingly soluble solids 1, 2, 4, 5-tetramethylbenzene, phenanthrene, and fluorene in various organic solvents by molecular simulation 2011; 56(4): 1587-95. https://doi.org/10.1021/je101251n

Paluch AS, Maginn EJJAJ. Predicting the solubility of solid phenanthrene: a combined molecular simulation and group contribution approach 2013; 59(7): 2647-61. https://doi.org/10.1002/aic.14020

Paluch AS, Maginn EJJI, Research EC. Efficient estimation of the equilibrium solution-phase fugacity of soluble nonelectrolyte solids in binary solvents by molecular simulation 2013; 52(38): 13743-60. https://doi.org/10.1021/ie401295j

Paluch AS, Parameswaran S, Liu S, Kolavennu A, Mobley DLJTJocp. Predicting the excess solubility of acetanilide, acetaminophen, phenacetin, benzocaine, and caffeine in binary water/ethanol mixtures via molecular simulation 2015; 142(4): 01B621_1. https://doi.org/10.1063/1.4906491

Liu S, Cao S, Hoang K, Young KL, Paluch AS, Mobley DLJJoct, et al. Using MD simulations to calculate how solvents modulate solubility 2016; 12(4): 1930-41. https://doi.org/10.1021/acs.jctc.5b00934

Gupta J, Nunes C, Vyas S, Jonnalagadda SJTJoPCB. Prediction of solubility parameters and miscibility of pharmaceutical compounds by molecular dynamics simulations 2011; 115(9): 2014-23. https://doi.org/10.1021/jp108540n

Banerjee S, Briesen HJTJocp. Molecular dynamics simulations of glycine crystal-solution interface 2009; 131(18): 184705. https://doi.org/10.1063/1.3258650

Gao Y, Olsen KWJMp. Molecular dynamics of drug crystal dissolution: simulation of acetaminophen form I in water 2013; 10(3): 905-17. https://doi.org/10.1021/mp4000212

Seyf JY, Haghtalab AJFPE. A junction between molecular dynamics simulation and local composition models for computation of solid-liquid equilibrium-A pharmaceutical solubility application 2017; 437: 83-95. https://doi.org/10.1016/j.fluid.2016.12.021

Lusci A, Pollastri G, Baldi PJJoci, modeling. Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules 2013; 53(7): 1563-75. https://doi.org/10.1021/ci400187y

Huuskonen J, Salo M, Taskinen JJJoci, sciences c. Aqueous solubility prediction of drugs based on molecular topology and neural network modeling 1998; 38(3): 450-6. https://doi.org/10.1021/ci970100x

Deng T, Jia G-zJMP. Prediction of aqueous solubility of compounds based on neural network 2020; 118(2): e1600754. https://doi.org/10.1080/00268976.2019.1600754

Ye Z, Ouyang DJJoC. Prediction of small-molecule compound solubility in organic solvents by machine learning algorithms 2021; 13(1): 1-13. https://doi.org/10.1186/s13321-021-00575-3

Boobier S, Hose DR, Blacker AJ, Nguyen BNJNc. Machine learning with physicochemical relationships: solubility prediction in organic solvents and water 2020; 11(1): 1-10. https://doi.org/10.1038/s41467-020-19594-z

Dearden J, Worth AJJS, Technical Reports E. In silico prediction of physicochemical properties 2007; 23051: 1-68.

GastroPlus. Lancaster, California, United States: Simulations Plus group; 2022 [Available from: https://www.simulations-plus.com].

SPARC. Danielsville, Georgia, United States: ARChem; 2022 [Available from: http://www.archemcalc.com/sparc.html].

Admensa. London and Cambridge, United Kingdom: Inpharmatica; 2022 [Available from: https://www.inpharmatica.co.uk/admensa.html].

PharmaAlgorithmsADMEBoxes. Toronto, Ontario, Canada: Advanced Chemistry Development, Inc.; 2022 [Available from: https://www.acdlabs.com/products/percepta-platform/adme-suite].

ALOGPS. Neuherberg, Germany: Virtual Computational Chemistry Laboratory; 2022 [Available from: http://vcclab.org/lab/alogps].

PredictionBase. Alameda, California, United States: IDBS inc.; [Available from: http://www.idbs.com].

Delaney JS. ESOL: estimating aqueous solubility directly from molecular structure. Journal of chemical information computer sciences 2004; 44(3): 1000-5. https://doi.org/10.1021/ci034243x

MOLPRO. Severniy pr, Chernogolovka, Russia: MOLPRO PROJECT; [Available from: http://molpro.ipac.ac.ru].

Absolv. Toronto, Ontario, Canada: Advanced Chemistry Development, Inc.; [Available from: https://www.acdlabs.com/products/percepta-platform/absolv/.

SOLVATION-CHEMISTRY. San Diego, California, United States: BIOVIA inc; [Available from: https://www.3ds.com/products-services/biovia].

AmsterdamModelingSuite. Parkowa, Poland: Fujitsu inc; [Available from: https://www.fqs.pl/chemia/produkty/adf].

ASTER. U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division (MED), Minnesota: Scientific Outreach Program; [Available from: http://q2626xmnay001.aa.ad.epa.gov/aster/.

PIPELINE-PILOT. San Diego, United States: BIOVIA; [Available from: https://www.3ds.com/products-services/biovia/products/data-science/pipeline-pilot/.

PROPRED. Charlottenlund, Denmark: PSE for SPEED Company Limited; [Available from: https://www.pseforspeed.com/cpt_product/propred/#: ~: text=ProPred%20is%20a%20property%20estimation,polymers%2C%20lipids%20and%20amino%20acids].

QikProp. Schrödinger, LLC, New York, NY Schrödinger Release; 2021 [Available from: https://www.schrodinger.com/products/qikprop].

EPI-Suite. United States Environmental Protection Agency, Washington, DC, USA: Estimation Programs Interface Suite™ for Microsoft® Windows; [Available from: https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface.

Dearden JCJEoodd. In silico prediction of aqueous solubility 2006; 1(1): 31-52. https://doi.org/10.1517/17460441.1.1.31

Advanced Chemistry Development, Inc.; [Available from: https://www.acdlabs.com/products/.

Cappelli CI, Manganelli S, Lombardo A, Gissi A, Benfenati EJSotte. Validation of quantitative structure–activity relationship models to predict water-solubility of organic compounds 2013; 463: 781-9. https://doi.org/10.1016/j.scitotenv.2013.06.081

Schneider G. Prediction of drug-like properties. Madame Curie Bioscience Database [Internet]: Landes Bioscience; 2013.

Khan PM, Rasulev B, Roy KJAo. QSPR modeling of the refractive index for diverse polymers using 2D descriptors 2018; 3(10): 13374-86. https://doi.org/10.1021/acsomega.8b01834

Jouyban A, Fakhree MA, Shayanfar A, Ghafourian TJJotBCS. QSPR modeling using Catalan solvent and solute parameters 2011; 22(4): 684-92. https://doi.org/10.1590/S0103-50532011000400011

Shayanfar A, Fakhree M, Jouyban AJJodds, technology. A simple QSPR model to predict aqueous solubility of drugs 2010; 20(6): 467-76. https://doi.org/10.1016/S1773-2247(10)50080-7

Egert T, Langowski H-CJEJoPS. Linear Solvation Energy Relationships (LSERs) for Robust Prediction of Partition Coefficients between Low Density Polyethylene and Water Part I: Experimental Partition Coefficients and Model Calibration 2022: 106137. https://doi.org/10.1016/j.ejps.2022.106137

Hansen CM. Hansen solubility parameters: a user's handbook: CRC press; 2007. https://doi.org/10.1201/9781420006834

Catalán JJTJoPCB. Toward a generalized treatment of the solvent effect based on four empirical scales: dipolarity (SdP, a new scale), polarizability (SP), acidity (SA), and basicity (SB) of the medium 2009; 113(17): 5951-60. https://doi.org/10.1021/jp8095727

Schwaighofer A, Schroeter T, Mika S, Laub J, Ter Laak A, Sülzle D, et al. Accurate solubility prediction with error bars for electrolytes: A machine learning approach 2007; 47(2): 407-24. https://doi.org/10.1021/ci600205g

Obrezanova O, Csányi G, Gola JM, Segall MDJJoci, modeling. Gaussian processes: a method for automatic QSAR modeling of ADME properties 2007; 47(5): 1847-57. https://doi.org/10.1021/ci7000633

Wang J, Krudy G, Hou T, Zhang W, Holland G, Xu XJJoci, et al. Development of reliable aqueous solubility models and their application in druglike analysis 2007; 47(4): 1395-404. https://doi.org/10.1021/ci700096r

Obrezanova O, Gola JM, Champness EJ, Segall MDJJoc-amd. Automatic QSAR modeling of ADME properties: blood–brain barrier penetration and aqueous solubility 2008; 22(6): 431-40. https://doi.org/10.1007/s10822-008-9193-8

Duchowicz PR, Talevi A, Bruno-Blanch LE, Castro EAJB, chemistry m. New QSPR study for the prediction of aqueous solubility of drug-like compounds 2008; 16(17): 7944-55. https://doi.org/10.1016/j.bmc.2008.07.067

Du-Cuny L, Huwyler J, Wiese M, Kansy MJEjomc. Computational aqueous solubility prediction for drug-like compounds in congeneric series 2008; 43(3): 501-12. https://doi.org/10.1016/j.ejmech.2007.04.009

Huuskonen J, Livingstone DJ, Manallack DTJS, Research QiE. Prediction of drug solubility from molecular structure using a drug-like training set 2008; 19(3-4): 191-212. https://doi.org/10.1080/10629360802083855

Zhou D, Alelyunas Y, Liu RJJoci, modeling. Scores of extended connectivity fingerprint as descriptors in QSPR study of melting point and aqueous solubility 2008; 48(5): 981-7. https://doi.org/10.1021/ci800024c

Hughes LD, Palmer DS, Nigsch F, Mitchell JBJJoci, modeling. Why are some properties more difficult to predict than others? A study of QSPR models of solubility, melting point, and Log P 2008; 48(1): 220-32. https://doi.org/10.1021/ci700307p

Hewitt M, Cronin MT, Enoch SJ, Madden JC, Roberts DW, Dearden JCJJoci, et al. In silico prediction of aqueous solubility: the solubility challenge 2009; 49(11): 2572-87. https://doi.org/10.1021/ci900286s

Kramer C, Beck B, Clark TJJoci, modeling. Insolubility classification with accurate prediction probabilities using a MetaClassifier 2010; 50(3): 404-14. https://doi.org/10.1021/ci900377e

Wang J, Hou TJCc, screening ht. Recent advances on aqueous solubility prediction 2011; 14(5): 328-38. https://doi.org/10.2174/138620711795508331

Raevsky OA, Polianczyk DE, Grigorev VY, Raevskaja OE, Dearden JCJMi. In silico prediction of aqueous solubility: A comparative study of local and global predictive models 2015; 34(6?7): 417-30. https://doi.org/10.1002/minf.201400144

Tosca EM, Bartolucci R, Magni PJP. Application of Artificial Neural Networks to Predict the Intrinsic Solubility of Drug-Like Molecules 2021; 13(7): 1101. https://doi.org/10.3390/pharmaceutics13071101

Ge K, Ji YJI, Research EC. Novel computational approach by combining machine learning with molecular thermodynamics for predicting drug solubility in solvents 2021; 60(25): 9259-68. https://doi.org/10.1021/acs.iecr.1c00998

Bergström CA, Larsson PJIjop. Computational prediction of drug solubility in water-based systems: Qualitative and quantitative approaches used in the current drug discovery and development setting 2018; 540(1-2): 185-93. https://doi.org/10.1016/j.ijpharm.2018.01.044

Cui Q, Lu S, Ni B, Zeng X, Tan Y, Chen YD, et al. Improved prediction of aqueous solubility of novel compounds by going deeper with deep learning 2020; 10: 121. https://doi.org/10.3389/fonc.2020.00121

Kurotani A, Kakiuchi T, Kikuchi JJAo. Solubility Prediction from Molecular Properties and Analytical Data Using an In-phase Deep Neural Network (Ip-DNN) 2021; 6(22): 14278-87. https://doi.org/10.1021/acsomega.1c01035

Hu P, Jiao Z, Zhang Z, Wang QJI, Research EC. Development of Solubility Prediction Models with Ensemble Learning 2021; 60(30): 11627-35. https://doi.org/10.1021/acs.iecr.1c02142

Lennernas H, Lindahl A, Van Peer A, Ollier C, Flanagan T, Lionberger R, et al. In vivo predictive dissolution (IPD) and biopharmaceutical modeling and simulation: future use of modern approaches and methodologies in a regulatory context 2017; 14(4): 1307-14. https://doi.org/10.1021/acs.molpharmaceut.6b00824

Duque MD, Issa MG, Silva DA, Barbosa EJ, Löbenberg R, Ferraz HGJDT. In silico simulation of dissolution profiles for development of extended-release doxazosin tablets 2018; 25(4): 14-21. https://doi.org/10.14227/DT250418P14

Zhang F, Zhou Y, Wu N, Jia R, Liu A, Liu B, et al. In silico prediction of bioequivalence of Isosorbide Mononitrate tablets with different dissolution profiles using PBPK modeling and simulation 2021; 157: 105618. https://doi.org/10.1016/j.ejps.2020.105618

Downloads

Published

2022-08-06

Issue

Section

Articles